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Abstract. Conditional mean embeddings are nonparametric models that
encode conditional expectations in a reproducing kernel Hilbert space.
While they provide a flexible and powerful framework for probabilistic
inference, their performance is highly dependent on the choice of kernel
and regularization hyperparameters. Nevertheless, current hyperparam-
eter tuning methods predominantly rely on expensive cross validation
or heuristics that is not optimized for the inference task. For condi-
tional mean embeddings with categorical targets and arbitrary inputs,
we propose a hyperparameter learning framework based on Rademacher
complexity bounds to prevent overfitting by balancing data fit against
model complexity. Our approach only requires batch updates, allowing
scalable kernel hyperparameter tuning without invoking kernel approxima-
tions. Experiments demonstrate that our learning framework outperforms
competing methods, and can be further extended to incorporate and
learn deep neural network weights to improve generalization.4
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1 Introduction

Conditional mean embeddings (CMEs) are attractive because they encode con-
ditional expectations in a reproducing kernel Hilbert space (RKHS), bypassing
the need for a parametrized distribution [Song et al., 2013]. They are part of
a broader class of techniques known as kernel mean embeddings, where non-
parametric probabilistic inference can be carried out entirely within the RKHS
because difficult marginalization integrals become simple linear algebra [Muandet
et al., 2016]. This very general framework is core to modern kernel probabilis-
tic methods, including kernel two-sample testing [Gretton et al., 2007], kernel
Bayesian inference [Fukumizu et al., 2013], density estimation [Kanagawa and

4 Source code available at: https://github.com/Kelvin-Hsu/cake



Fukumizu, 2014, Song et al., 2008], component analysis [Muandet et al., 2013],
dimensionality reduction [Fukumizu et al., 2004], feature discovery [Jitkrittum
et al., 2016], and state space filtering [Kanagawa et al., 2016].

Nevertheless, like most kernel based models, their performance is highly
dependent on the hyperparameters chosen. For these models, the model selection
process usually begins by selecting a kernel, whose parameters become part of
the model hyperparameters, which may further include noise or regularization
hyperparameters. Given a set of hyperparameters, training is performed by solving
either a convex optimization problem, such as the case in support vector machines
(SVMs) [Schölkopf and Smola, 2002], or a set of linear equations, such as the
case in Gaussian processes (GPs) [Rasmussen and Williams, 2006], regularized
least squares classifiers (RLSCs) [Rifkin et al., 2003], and CMEs. Unfortunately,
hyperparameter tuning is not straight forward, and often cross validation [Song
et al., 2013] or median length heuristics [Muandet et al., 2016] remain as the
primary approaches for this task. The former can be computationally expensive
and sensitive to the selection and number of validation sets, while the latter
heuristic only applies to hyperparameters with a length scale interpretation and
makes no reference to the conditional inference problem involved as it does not
make use of the targets.

One notable success story in this domain are GPs, which employ its marginal
likelihood as an objective for hyperparameter learning. The marginal likelihood
arises from its Bayesian formulation, and exhibits certain desirable properties –
in particular, the ability to automatically balance between data fit and model
complexity. On the other hand, CMEs are not necessarily Bayesian, and hence
they do not benefit from a natural marginal likelihood formulation, yet such a
balance is critical when generalizing the model beyond known examples.

Can we formulate a learning objective for CMEs to balance data fit and model
complexity, similar to the marginal likelihood of GPs? For CMEs with categorical
targets and arbitrary input, we present such a learning objective as our main
contribution. In particular, we: (1) derive a data-dependent model complexity
measure r(θ, λ) for a CME with hyperparameters (θ, λ) based on the Rademacher
complexity of a relevant class of CMEs, (2) propose a novel learning objective
based on this complexity measure to control generalization risk by balancing
data fit against model complexity, and (3) design a scalable hyperparameter
learning algorithm under this objective using stochastic batch gradient updates.
We show that this learning objective produces CMEs that generalize better
than that learned from cross validation, empirical risk minimization (ERM), and
median length heuristics on standard benchmarks, and apply such an algorithm to
incorporate and learn neural network weights to improve generalization accuracy.

2 Background and Related Work

2.1 Conditional Mean Embeddings

To construct a conditional mean embedding operator UY |X corresponding to the
distribution PY |X , where X : Ω → X and Y : Ω → Y are measurable random



variables, we first choose a kernel k : X × X → R for the input space X and
another kernel l : Y × Y → R for the output space Y . These kernels k and l each
describe how similarity is measured within their respective domains X and Y,
and are symmetric positive definite such that they uniquely define the RKHS Hk
and Hl. The conditional mean embedding operator UY |X is then the operator
U : Hk → Hl for which µY |X=x = Uk(x, ·), where µY |X=x := E[l(Y, ·)|X = x] is
the CME [Song et al., 2009]. In this sense, it sweeps out a family of conditional
mean embeddings µY |X=x in Hl, each indexed by the input variable x ∈ X . We
then define cross covariance operators CY X := E[l(Y, ·) ⊗ k(X, ·)] : Hk → Hl
and CXX := E[k(X, ·)⊗ k(X, ·)] : Hk → Hk. Alternatively, they can be seen as
elements within the tensor product space CY X ∈ Hl ⊗Hk and CXX ∈ Hk ⊗Hk.

Under the assumption that k(x, ·) ∈ image(CXX), it can be shown that
UY |X = CY XC

−1
XX . While this assumption is satisfied for finite domains X with a

characteristic kernel k, it does not necessarily hold when X is a continuous domain
[Fukumizu et al., 2004], which is the case for many classification problems. In this
case, CY XC−1XX becomes only an approximation to UY |X , and we instead regularize
the inversion and use UY |X = CY X(CXX + λI)−1, which also serves to avoid
overfitting [Song et al., 2013]. CMEs are useful for probabilistic inference since
conditional expectations of a function g ∈ Hl can be expressed as inner products
with the CME, E[g(Y )|X = x] = 〈µY |X=x, g〉, provided that E[g(Y )|X = ·] ∈ Hk
[Song et al., 2009, Theorem 4].

Furthermore, as both CY X and CXX are defined via expectations, we can
estimate them with their respective empirical means to derive a nonparametric
estimate for UY |X based on finite collection of observations {xi, yi} ∈ X × Y,
i ∈ Nn := {1, . . . , n},

ÛY |X = Ψ(K + nλI)−1ΦT , (1)

where Kij := k(xi, xj), Φ :=
[
φ(x1) . . . φ(xn)

]
, Ψ :=

[
ψ(y1) . . . ψ(yn)

]
, φ(x) :=

k(x, ·), and ψ(y) := l(y, ·) [Song et al., 2013]. The empirical CME defined by
µ̂Y |X=x := ÛY |Xk(x, ·) then stochastically converges to the CME µY |X=x in the
RKHS norm at a rate of Op((nλ)−

1
2 + λ

1
2 ), under the assumption that k(x, ·) ∈

image(CXX) [Song et al., 2009, Theorem 6]. This allows us to approximate the
conditional expectation with 〈µ̂Y |X=x, g〉 instead,

E[g(Y )|X = x] ≈ 〈µ̂Y |X=x, g〉 = gT (K + nλI)−1k(x), (2)

where g := {g(yi)}ni=1 and k(x) := {k(xi, x)}ni=1.

2.2 Hyperparameter Learning

Hyperparameter learning for CMEs is particularly difficult compared to marginal
or joint embeddings, since the kernel k = kθ with hyperparameters θ ∈ Θ is to be
learned jointly with a regularization hyperparameter λ ∈ Λ = R+. Grünewälder
et al. [2012] proposed to hold out a validation set {k(xtj , ·), l(ytj , ·)}Jj=1 and
minimize 1

J

∑J
j=1

∥∥l(ytj , ·)− ÛY |Xk(xtj , ·)
∥∥2
Hl

where ÛY |X is estimated from the
remaining training set using (1). This could also be repeated over multiple folds for



cross validation. Song et al. [2013, p. 15] also uses this cross validation approach,
but adds regularization λ‖U‖2HS to the validation objective. Validation sets are
necessary for improving generalization to unseen examples. This is because the
CME is already the solution that minimizes the objective from Grünewälder et al.
[2012] over the operator space, so further optimization over the hyperparmeters
using the same training set would lead to overfitting. Moreoever, the cross
validation objective changes depending on the particular split and number of
folds. Additionally, by fitting a separate model for each fold during learning, they
incur a large computational cost of O(Jn3) for J folds, and become prohibitive
with large datasets. This spells a need for an alternative hyperparameter learning
framework using a different objective.

When cross validation is too expensive, length scales can be set by the median
heuristic [Muandet et al., 2016] via ` = mediani,j(‖xi−xj‖2) for many stationary
kernels. However, they cannot be used to set hyperparameters other than length
scales, such as λ. In the setting of two sample testing, Gretton et al. [2012] note
that they can possibly lead to poor performance. In the context of CMEs, they are
also unable to leverage supervision from labels. Flaxman et al. [2016] proposed a
Bayesian learning framework for marginal mean embeddings via inducing points,
although it is unclear how this can be extended to CMEs. Fukumizu et al. [2009]
also investigated the choice of kernel bandwidth for stationary kernels in the
setting of binary classification and two sample testing using maximum mean
discrepancy (MMD), but has yet to generalize to CMEs or multiclass settings.

2.3 Rademacher Complexity

Rademacher complexity [Bartlett and Mendelson, 2002] measures the expres-
siveness of a function class F by its ability to shatter, or fit, noise. They are
data-dependent measures, and are thus particularly well suited to learning tasks
where generalization is vital, since complexity penalties that are not data de-
pendent cannot be universally effective [Kearns et al., 1997]. The Rademacher
complexity [Bartlett and Mendelson, 2002, Definition 2] of a function class
F is defined by Rn(F ) := E[supf∈F ‖ 2n

∑n
i=1 σif(Xi)‖], where {σi}ni=1 are iid

Rademacher random variables, taking values in {−1, 1} with equal probability,
and {Xi}ni=1 are iid random variables from the same distribution PX . Since
{σi}ni=1 are distributed independently without knowledge of f , the intuition is
to interpret {σi}ni=1 as labels that are simply noise. For a given set of inputs
{Xi}ni=1, the term inside the norm is high when the sign of f(Xi) matches the
signs of σi averaged across i ∈ Nn, meaning that f has managed to fit the noise
well. We take this as the defining feature of what it means for a model f to be
complex. The suprenum then finds the f within F that fits the noise the best,
intuitively representing the most complex f within F . The final expectation then
averages this quantity across realizations of {Xi}ni=1 from PX .

Rademacher complexities are usually applied in the context where classifiers
are trained by minimizing some empirical loss within a class of classifiers whose
Rademacher complexity is bounded. In the context of multi-label learning, Yu
et al. [2014] used trace norm regularization to bound the Rademacher complexity,



achieving tight generalization bounds. Xu et al. [2016] extends the trace norm
regularization approach by considering the local Rademacher complexity on a
subset of the predictor class, where they instead minimize the tail sum of the
predictor singular values. Local Rademacher complexity has also been employed
for multiple kernel learning [Cortes et al., 2013, Kloft and Blanchard, 2011] to learn
convex combinations of fixed kernels for SVMs. Similarly, Pontil and Maurer [2013]
also used trace norm regularization to bound the Rademacher complexity and
minimize the truncated hinge loss. Nevertheless, while Rademacher complexities
have been employed to restrict the function class considered for training weight
parameters, they have not been applied to learn kernel hyperparameters itself.

3 Multiclass Conditional Embeddings

In this section we present a particular type of CMEs that are suitable for prediction
tasks with categorical targets. We show that for CMEs with categorical targets
and arbitrary inputs, we can further infer conditional probabilities directly, and
not just conditional expectations. As there can be more than two target categories,
we refer to these CMEs as multiclass conditional embeddings (MCEs).

For categorical targets, the output label space is finite and discrete, taking
values only in Y = Nm := {1, . . . ,m}. Naturally, we choose the Kronecker delta
kernel δ : Nm × Nm → {0, 1} as the output kernel l, where labels that are the
same have unit similarity and labels that are different have no similarity. That is,
for all pairs of labels yi, yj ∈ Y, δ(yi, yj) = 1 only if yi = yj and is 0 otherwise.
As δ is an integrally strictly positive definite kernel on Nm, it is therefore
characteristic [Sriperumbudur et al., 2010, Theorem 7]. Therefore, by definition
[Fukumizu et al., 2004], δ uniquely defines a RKHS Hδ = span{δ(y, ·) : y ∈ Y},
which is the closure of the span of its kernel induced features [Xu and Zhang,
2009]. For Y = Nm, this means that any g : Nm → R that is bounded on
its discrete domain Nm is in the RKHS of δ, because we can always write
g =

∑m
y=1 g(y)δ(y, ·) ∈ span{δ(y, ·) : y ∈ Y} ⊆ Hδ. In particular, indicator

functions on Nm are in Hδ, since 1c(y) := 1{c}(y) = δ(c, y), so that 1c = δ(c, ·)
are simply the canonical features ofHδ. Such properties do not necessarily hold for
continuous target domains in general. For discrete target domains, this convenient
property enables consistent estimations of decision probabilities.

Let pc(x) := P[Y = c|X = x] be the decision probability function for class
c ∈ Nm, which is the probability of the class label Y being c when the example
X is x. Importantly, note that there are no restrictions on the input domain X as
long as a kernel k can be defined on it. For example, X could be the continuous
Euclidean space Rd, the space of images, or the space of strings. We begin by
writing this probability as an expectation of indicator functions,

pc(x) := P[Y = c|X = x] = E[1c(Y )|X = x]. (3)

With 1c ∈ Hδ, we let g = 1c in (2) and 1c := {1c(yi)}ni=1 to estimate the
right hand side of (3) by

p̂c(x) = fc(x) := 1Tc (K + nλI)−1k(x). (4)



LetY :=
[
11 12 · · · 1m

]
∈ {0, 1}n×m be the one hot encoded labels of {yi}ni=1.

The vector of empirical decision probabilities over the classes c ∈ Nm is then

p̂(x) = f(x) := YT (K + nλI)−1k(x) ∈ Rm. (5)

Since U = ÛY |X (1) is the solution to a regularized least squares problem in
the RKHS from k(x, ·) ∈ Hk to l(y, ·) ∈ Hl [Grünewälder et al., 2012], CMEs are
essentially kernel ridged regressors (KRRs) with targets in the RKHS. In this
case, because Y = Nm is discrete, Hδ can be identified with Rm. As a result, the
rows of the MCE can also be seen as m KRRs [Friedman et al., 2001] on binary
{0, 1}-targets, where they all share the same input kernel k. Because they all
share the same kernel to form the MCE, we can show that the empirical decision
probabilities (4) do converge to the population decision probability.

Theorem 1 (Convergence of Empirical Decision Probability Function).
Assuming that k(x, ·) is in the image of CXX , the empirical decision probability
function p̂c : X → R (4) converges uniformly to the true decision probability
pc : X → [0, 1] (3) at a stochastic rate of at least Op((nλ)−

1
2 + λ

1
2 ) for all

c ∈ Y = Nm. See appendix for proof, including for all subsequent theorems.

In particular, the assumption k(x, ·) ∈ image(CXX) is a statement on the
input kernel k, not the output kernel l, which is a Kronecker delta l = δ for
MCEs. It is worthwhile to note that this assumption is common for CMEs, and is
not as restrictive as it may first appear, as it can be relaxed through introducing
the regularization hyperparameter λ (1) in practice [Muandet et al., 2016, Song
et al., 2013, 2009, p.74-75, Sec. 3 and 3.1 resp.].

Note that for finite n the probability estimates (4) may not necessarily lie
in the range [0, 1] nor form a normalized distribution for finite n. Nonetheless,
theorem 1 guarantees that they approach one with increasing sample size. When
normalized distributions are required, clip-normalized estimates can be used,

p̃c(x) :=
max{p̂c(x), 0}∑m
j=1 max{p̂j(x), 0}

. (6)

This does not change the resulting prediction, since ŷ(x) = argmaxc∈Nm p̂c(x) =
argmaxc∈Nm p̃c(x). Theorem 1 also implies that eventually the effect of clip-
normalization vanishes, where p̃c(x) approaches to both p̂c(x) and thus pc(x)
with increasing sample sizes.

Importantly, this enables MCEs to be naturally applied to perform proba-
bilistic classification in multiclass settings with categorical targets. In contrast,
in terms of probabilistic classification, support vector classifiers (SVCs) do not
output probabilities and probabilistic extensions require difficult calibration,
while Gaussian process classifiers (GPCs) require posterior approximations. Fur-
thermore, in terms of the multiclass setting, multiclass extensions to SVCs and
GPCs often employ the one versus all (OVA) or one versus one (OVO) scheme
[Aly, 2005], resulting in multiple separately trained binary classifiers with no
guarantees of coherence between their outputs. Instead, training a single MCE is
sufficient for producing consistent multiclass probabilistic estimates.



Similar to RLSC, MCEs are solutions to a regularized least squares problem
in a RKHS [Grünewälder et al., 2012], resulting in a similar system of linear
equations. Nevertheless, RLSCs primarily differ in the way they handle the labels,
in which binary labels {−1, 1} appear directly in the squared loss instead of its
kernel feature δ(yi, ·) or, equivalently, its one hot encoded form yi. Consequently,
multiclass extensions for RLSC either require using the OVA scheme [Rifkin et al.,
2003] which suffers from computational and coherence issues, or alternatively
minimize the total loss across all binarized tasks for the overall least squares
problem [Pahikkala et al., 2012]. Although the latter attempts to link the classifiers
together through its loss, both approaches still produce separate classifiers for
each class. As a result, multiclass RLSC does not produce consistent estimates of
class probabilities as in theorem 1 for MCEs.

4 Hyperparameter Learning with Rademacher
Complexity Bounds

In this section we derive learning theoretic bounds that motivate our proposed
hyperparameter learning algorithm, and discuss how it can be extended in various
ways to enhance scalability and performance. From here onwards, we denote θ as
the kernel hyperparameters of the kernel k = kθ.

We begin by defining a loss function as a measure for performance. For
decision functions of the form f : X → A = Rm whose entries are probability
estimates, we employ a modified cross entropy loss,

Lε(y, f(x)) := − log [yT f(x)]1ε = − log [fy(x)]1ε , (7)

to express risk, where we use the notation [ · ]1ε := min{max{ · , ε}, 1} for
ε ∈ (0, 1). It is worthwhile to point out that this choice only makes sense due to
theorem 1, as it allows us to interpret the outputs of the CME as asymptotic
probability estimates. Note that we employ the loss on the original probability
estimates (5), not the clip-normalized version (6). We employ this loss in virtue
of theorem 1, where we expect f(x) (5) to be approximations to the population
decision probabilities. In contrast, direct outputs from SVCs, GPCs, or RLSCs
are not consistent probability estimates and cannot take advantage of (7) easily.

However, simply minimizing the empirical loss 1
n

∑n
i=1 Lε(yi, fθ,λ(xi)) over

the hyperparameters (θ, λ) could lead to an overfitted model. We therefore employ
Rademacher complexity bounds to control the model complexity of MCEs.

Let Θ and Λ be a space of kernel and regularization hyperparameters respec-
tively. We define the class of MCEs over these hyperparameter spaces by

Fn(Θ,Λ) := {fθ,λ(x) : θ ∈ Θ, λ ∈ Λ}. (8)

We denoteWT
θ,λ ≡ Û

(θ,λ)
Y |X so that ‖Wθ,λ‖tr = ‖Û (θ,λ)

Y |X ‖HS to reflect the dependence
on (θ, λ) and also to emphasize the role it plays as the weights of the decision
function. We first restrict the space of hyperparameters by the norms of Wθ,λ and
kθ(x, x) to obtain an upper bound to the Rademacher complexity of Fn(Θ,Λ).



Theorem 2 (MCE Rademacher Complexity Bound). Suppose that the
trace norm ‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Further suppose that the
canonical feature map is bounded in RKHS norm ‖φθ(x)‖2Hkθ = kθ(x, x) ≤ α2,
α > 0, for all x ∈ X , θ ∈ Θ. For any set of training observations {xi, yi}ni=1, the
Rademacher complexity of the class of MCEs Fn(Θ,Λ) (8) is bounded by

Rn(Fn(Θ,Λ)) ≤ 2αρ. (9)

Bartlett and Mendelson [2002] showed that the expected risk can be bounded
with high probability using the empirical risk and the Rademacher complexity
of the loss composed with the function class. For a Lipchitz loss, Ledoux and
Talagrand [2013] further showed that the latter quantity can be bounded using
the Rademacher complexity of the function class itself. We use these two results
to arrive at the following probabilistic upper bound to our expected loss.

Theorem 3 (MCE ε-Specific Expected Risk Bound). Assume the same
assumptions as theorem 2. For any integer n ∈ N+, any ε ∈ (0, e−1), and any
set of training observations {xi, yi}ni=1, with probability of at least 1− β over iid
samples {Xi, Yi}ni=1 of length n from PXY , every f ∈ Fn(Θ,Λ) satisfies

E[Le−1(Y, f(X))] ≤ 1

n

n∑
i=1

Lε(Yi, f(Xi)) + 4e αρ+

√
8

n
log

2

β
. (10)

However, for hyperparameter learning, we would require a risk bound for
specific choice of hyperparameters, not just for a set of hyperparameters. For
some θ̃ ∈ Θ and λ̃ ∈ Λ, we construct a subset of hyperparameters Ξ(θ̃, λ̃) ⊆ Θ×Λ
defined by Ξ(θ̃, λ̃) := {(θ, λ) ∈ Θ × Λ : ‖Wθ,λ‖tr ≤ ‖Wθ̃,λ̃‖tr, supx∈X kθ(x, x) ≤
α2(θ̃) := supx∈X kθ̃(x, x)}. Clearly, this subset is non-empty, since (θ̃, λ̃) ∈ Ξ(θ̃, λ̃)
is itself an element of this subset. Thus, we can assert that ‖Wθ,λ‖tr ≤ ρ =

‖Wθ̃,λ̃‖tr is bounded for all (θ, λ) ∈ Ξ(θ̃, λ̃), and that ‖φθ(x)‖2Hkθ = kθ(x, x) ≤
α2 = supx∈X kθ̃(x, x) is bounded for all x ∈ X , (θ, λ) ∈ Ξ(θ̃, λ̃).

We can now choose some arbitrary θ̃ ∈ Θ, λ̃ ∈ Λ and apply theorem 3 with ρ =
‖Wθ̃,λ̃‖tr and α2 = supx∈X kθ̃(x, x) and by considering only the hyperparameters
(θ, λ) ∈ Ξ(θ̃, λ̃). The probabilistic statement (10) then only holds for (θ, λ) ∈
Ξ(θ̃, λ̃). In particular, since (θ̃, λ̃) ∈ Ξ(θ̃, λ̃), it holds for (θ, λ) = (θ̃, λ̃). Applying
this choice, the only hyperparameters that remain in the statement are (θ̃, λ̃). We
then replace these symbols with (θ, λ) again to avoid cluttered notation. Since
they were chosen arbitrarily from Θ × Λ, we arrive at our final result.

Theorem 4 (MCE Expected Risk Bound for Hyperparameters). For
any integer n ∈ N+ and any set of training observations {xi, yi}ni=1 used to define
fθ,λ (5), with probability 1−β over iid samples {Xi, Yi}ni=1 of length n from PXY ,
every θ ∈ Θ, λ ∈ Λ, and ε ∈ (0, e−1) satisfies

E[Le−1(Y, fθ,λ(X))] ≤ 1

n

n∑
i=1

Lε(Yi, fθ,λ(Xi)) + 4e r(θ, λ) +

√
8

n
log

2

β
, (11)



Algorithm 1 MCE Hyperparameter Learning with Stochastic Gradient Updates
1: Input: kernel family kθ : X × X → R, dataset {xi, yi}ni=1, initial kernel hyperpa-

rameters θ0, initial regularization hyperparameters λ0, learning rate η, cross entropy
loss threshold ε, batch size nb

2: θ ← θ0, λ← λ0

3: repeat
4: Sample the next batch Ib ⊆ Nn s.t. |Ib| = nb
5: Y ← {δ(yi, c) : i ∈ Ib, c ∈ Nm} ∈ {0, 1}nb×m
6: Kθ ← {kθ(xi, xj) : i ∈ Ib, j ∈ Ib} ∈ Rnb×nb

7: Lθ,λ ← cholesky(Kθ + nbλInb) ∈ Rnb×nb

8: Vθ,λ ← LTθ,λ\(Lθ,λ\Y ) ∈ Rnb×m

9: Pθ,λ ← KθVθ,λ ∈ Rnb×m

10: r(θ, λ)← α(θ)
√

trace(V Tθ,λKθVθ,λ)

11: q(θ, λ)← 1
nb

∑nb
i=1 Lε((Y )i, (Pθ,λ)i) + 4e r(θ, λ)

12: (θ, λ)← GradientBasedUpdate(q, θ, λ; η)
13: until maximum iterations reached
14: Output: kernel hyperparameters θ, regularization λ

where r(θ, λ) :=
√

trace(V Tθ,λKθVθ,λ) supx∈X kθ(x, x) and Vθ,λ := (Kθ+nλI)−1Y.

In particular, r(θ, λ) is an upper bound to the Rademacher complexity of a
relevant class of MCEs based on the hyperparameters Ξ(θ, λ). We call r(θ, λ)
the Rademacher complexity bound (RCB) and use it to measure the model
complexity of a MCE with hyperparameters (θ, λ). Since the training set itself is
a sample of length n drawn from PXY , the inequality (11) holds with probability
1−β when the random variables (Xi, Yi) are realized as the training observations
(xi, yi). Motivated by this, we employ this upper bound as the learning objective
for hyperparameter learning,

q(θ, λ) :=
1

n

n∑
i=1

Lε(yi, fθ,λ(xi)) + 4e r(θ, λ). (12)

Importantly, the first term is an empirical risk that measures data fit, and the
second term is the RCB that measures model complexity. Together, this learning
objective achieves a balance between data fit and model complexity, similar to the
corresponding property of a negative log marginal likelihood learning objective.

4.1 Extensions

Batch Stochastic Gradient Update Since theorem 4 holds for any n ∈ N+ and any
set of data {xi, yi}ni=1 from PXY , the bound (11) also holds with high probability
for a batch subset of the training data. However, the batch size cannot be too
small, in order to keep the constant

√
8 log (2/β)/n relatively small. We therefore

propose to use only a random batch subset of the data to perform each gradient
update. This enables scalable hyperparameter learning through batch stochastic



gradient updates, where each gradient update stochastically improves a different
probabilistic upper bound of the generalization risk. Note that without theorem 4,
it is not straightforward to simply apply stochastic gradient updates to optimize
q, since r depends on the dataset but is not written in terms of a summation over
the data. We present this scalable hyperparameter learning approach via batch
stochastic gradient updates in algorithm 1, reducing the time complexity from
O(n3) to O(n3b), where nb is the batch size. The Cholesky decomposition for the
full training set requires O(n3) time and is necessary only for inference, instead
of once every learning iteration. It can be further avoided by using random
Fourier features [Rahimi and Recht, 2008] or kernel herding [Chen et al., 2010]
to approximate the already learned MCE. All further inference takes O(n2) time,
or potentially less with approximation, using back substitution.

Batch Validation While we simply instantiated (Xi, Yi) to be the training obser-
vations in theorem 4 to obtain (12), this does not have to be the case for batch
updates. Instead, in each learning iteration, we could further split the batch into
two sub-batches – one for training and one for validation. The training batch is
used to form the MCE fθ,λ and RCB r(θ, λ), while we evaluate the empirical risk
on the validation batch,

q(V )(θ, λ) :=
1

n(V )

n(V )∑
i=1

Lε(y(V )
i , f

(T )
θ,λ (x

(V )
i )) + τ r(T )(θ, λ), (13)

where (T ) and (V ) denotes training and validation. Importantly, in contrast to
standard cross validation, not all data is required for each update due to the
presence of the RCB. Furthermore, although the multiplier on the RCB is 4e,
experiments show that generalization performance can improve if we use a smaller
multiplier τ < 4e, suggesting an upper bound tighter than (11) may exist. In
practice, these two extensions work well together. Intuitively, by introducing a
validation batch to measure empirical data fit, a smaller weight on the complexity
penalty is required.

Conditional Embedding Network Our learning algorithm does not restrict the way
the kernel kθ is constructed from its hyperparameters θ ∈ Θ. One particularly
useful type of MCEs are those where the input kernel kθ(x, x′) = 〈ϕθ(x), ϕθ(x

′)〉
is constructed from neural networks ϕθ : X → Rp explicitly. We refer to MCEs
constructed this way as conditional embedding networks (CENs). In these cases,
the weights and biases of the neural network become the kernel hyperparameters θ
of the CENs. We can therefore learn network weights and biases jointly under (12).
CENs can also scale easily, since the n× n Cholesky decomposition required for
full gradient updates in algorithm 1 can be transformed into a p×p decomposition
by the Woodbury matrix inversion identity [Higham, 2002], reducing the time
complexity to O(p3 +np2). This allows scalable learning for n >> p even without
using batch gradient updates. For inference, standard map reduce methods can
be used. We direct the reader to appendix C for detailed discussion on the various
MCE architectures and their implementation as compared to algorithm 1.
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Fig. 1. Rademacher complexity balanced learning of hyperparameters for an isotropic
Gaussian MCE, using the first two attributes of the iris dataset.

5 Experiments

Toy Example The first two of four total attributes of the iris dataset [Fisher, 1936]
are known to have class labels that are non-separable by any means, in that the
same example x ∈ R2 may be assigned different output labels y ∈ N3 := {1, 2, 3}.
In these difficult scenarios, the notion of model complexity is extremely important,
and the success of a learning algorithm greatly depends on how it balances training
performance and model complexity to avoid both underfitting and overfitting.

Figure 1 demonstrates algorithm 1 with full gradient updates (nb = n) to learn
hyperparameters of the MCE on the two attribute iris dataset. The kernel used is
isotropic Gaussian with diagonal length scales Σ = `2I2 and sensitivity α = σf ,
so that the hyperparameters are θ = (α, `) and λ. We evaluate the performance of
the learning algorithm on a withheld test set using 20% of the available 150 data
samples. Attributes are scaled into the unit range [0, 1] and decision probability
maps are plotted for the region [−0.5, 1.05]2, where the red, green, and blue
color channels represent the clip-normalized decision probability (6) for classes
c = 1, 2, 3. We begin from two initial sets of hyperparameters, one originally
overfitting and another underfitting the training data. Initially, both models
perform sub-optimally with a test accuracy of 56.67%. We see that the RCB
r(θ, λ) appropriately measures the amount of overfitting with high (resp. low)
values for the overfitted (resp. underfitted) model. We then learn hyperparameters
with algorithm 1 for 500 iterations from both initializations at rate η = 0.01,
where both models converges to a balanced model with a moderate RCB and an
improved test accuracy of 73.33%. In particular, the initially overfitted model
learns a simpler model at the expense of lower training performance, emphasizing
the benefits of complexity based regularization, without which the learning would
only maximize training performance at the cost of further overfitting. Meanwhile,



Table 1. Test accuracy (%) on UCI datasets

Method banknote ecoli robot segment wine yeast

GMCE 99.9± 0.2 87.5± 4.4 96.7± 0.9 98.4± 0.8 97.2± 3.7 52.5± 2.1
GMCE-SGD 98.8± 0.9 84.5± 5.0 95.5± 0.9 96.1± 1.5 93.3± 6.0 60.3± 4.4
CEN-1 99.5± 1.0 87.5± 3.2 82.3± 7.1 94.6± 1.6 96.1± 5.0 55.8± 5.0
CEN-2 99.4± 0.9 86.3± 6.0 94.5± 0.8 96.7± 1.1 97.2± 5.1 59.6± 4.0
ERM 99.9± 0.2 72.1± 20.5 91.0± 3.7 98.1± 1.1 93.9± 5.2 45.9± 6.4
CV 99.9± 0.2 73.8± 23.8 90.9± 3.4 98.3± 1.3 93.3± 7.4 58.0± 5.8
MED 92.0± 4.3 42.1± 47.7 81.1± 6.2 27.3± 26.4 93.3± 7.8 31.2± 14.1

Others 99.78a 81.1b 97.59c 96.83d 100e 55.0b

the initially underfitted model learns to increase complexity to improve the
sub-optimal performance on the training set.

UCI Datasets We demonstrate the average performance of learning anisotropic
Gaussian kernels and kernels constructed from neural networks on standard UCI
datasets [Bache and Lichman, 2013], summarized in table 1. The former has a
shallow but wide model architecture, while the latter has a deeper but narrower
model architecture. The Gaussian kernel is learned with both full (GMCE) and
batch stochastic gradient updates (GMCE-SGD) using a tenth (nb ≈ n

10 ) of the
training set each training iteration, with sensitivity and length scales initialized
to 1. For CENs, we randomly select two simple fully connected architectures
with 16-32-8 (CEN-1) and 96-32 (CEN-2) hidden units respectively, and learn
the conditional mean embedding without dropout under ReLU activation. Biases
and standard deviations of zero mean truncated normal distributed weights
are initialized to 0.1, and are to be learned with full gradient updates. For
all experiments, λ is initialized to 1 and is learned jointly with the kernel.
Optimization is performed with the Adam optimizer [Kingma and Ba, 2016] in
TensorFlow [Abadi et al., 2016] with a rate of η = 0.1 and ε = 10−15 under the
learning objective q(θ, λ) (12). Learning is run for 1000 epochs to allow direct
comparison. All attributes are scaled to the unit range. Each model is trained on
9 out of 10 folds and tested on the remaining fold, which are shuffled over all 10
combinations to obtain the test accuracy average and deviation. We compare our
results to MCEs whose hyperparameters are tuned by ERM (without the RCB
term in (12)), cross validation (CV), and the median heuristic (MED), as well as
to other approaches using neural networks [Freire et al., 2009, Kaya et al., 2016,
a; c], probabilistic binary trees [Horton and Nakai, 1996, b], decision trees [Zhou
et al., 2004, d], and regularized discriminant analysis [Aeberhard et al., 1992, e].

Table 1 shows that our learning algorithm outperforms other hyperparameter
tuning algorithms, and performs similarly to competing methods. Our method
achieves this without any case specific tuning or heuristics, but by simply placing
a conditional mean embedding on training data and applying a complexity bound
based learning algorithm. The stochastic gradient approach for Gaussian kernels
performs similarly to the full gradient approach, supporting the claim of theorem 4
for n = nb. For CENs, we did not attempt to choose an optimal architecture for
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Fig. 2. Top: Test accuracy by learning Gaussian kernels (left) and deep convolutional
features (right). Bottom: Learned pixel length scales under ARD kernels.

each dataset. The learning algorithm is tasked to train the same simple network
for different datasets using 1000 epochs to achieve comparable performance.

Learning pixel relevance We apply algorithm 1 to learn length scales of anisotropic
Gaussian, or automatic relevance determination (ARD), kernels on pixels of the
MNIST digits dataset [LeCun et al., 1998]. In the top left plot of fig. 2, we train
on datasets of varying sizes, from 50 to 5000 images, and show the accuracy
on the standard test set of 10000 images. All hyperparameters are initialized
to 1 before learning. We train both SVCs and GPCs under the OVA scheme,
and use a Laplace approximation for the GPC posterior. In all cases MCEs
outperform SVCs as it cannot learn hyperparameters without expensive cross
validation. MCEs also outperform GPCs as more data becomes available. Under
the OVA scheme, the GPC approach learns a set of kernel hyperparameters for
each class, while our approach learns a consistent set of hyperparameters for
all classes. Consequently, for 5000 data points, the computational time required
for hyperparameter learning of GPCs is on the order of days even for isotropic
Gaussian kernels, while algorithm 1 is on the order of hours for anistropic Gaussian
kernels even without batch updates. We also compare hyperparameter learning
with and without the RCB. For small n below 750 samples, the latter outperforms
the former (e.g. 86.69% and 86.96% for n = 500), while for large n the former
outperforms the latter (e.g. 96.05% and 95.3% for n = 5000). This verifies that
complexity based regularization becomes especially important as data size grows,
when overfitting starts to decrease generalization performance. The images at
the bottom of fig. 2 show the pixel length scales learned through batch stochastic
gradient updates (nb = 1200) over all available training images the groups of
digits shown, demonstrating the most discriminative regions.

Learning convolutional layers We now apply algorithm 1 to train a CEN with
convolutional layers on MNIST. We employ an example architecture from the
TensorFlow tutorial on deep MNIST classification [Abadi et al., 2016]. This
ReLU activated convolutional neural network (CNN) uses two convolutional
layers, each with max pooling, followed by a fully connected layer with a drop



out probability of 0.5. The original CNN then employs a final softmax regressor
on the last hidden layer for classification. The CEN instead employs a linear
kernel on the last hidden layer to construct the conditional mean embedding.
We then train both networks from the same initialization using batch updates
of nb = 6000 images for 800 epochs, with learning rate η = 0.01. All biases and
weight standard deviations are initialized to 0.1. The network weights and biases
of the CEN are learned jointly with the regularization hyperparameter, initialized
to λ = 10, under our learning objective (12), while the original CNN is trained
under its usual cross entropy loss. The fully connected layer is trained with a
drop out probability of 0.5 for both cases to allow direct comparison. The top
right plot in fig. 2 shows that CENs learn at a much faster rate, maintaining a
higher test accuracy at all epochs. After 800 epochs, CEN reaches a test accuracy
of 99.48%, compared to 99.26% from the original CNN. This demonstrates that
our learning algorithm can perform end-to-end learning with convolutional layers
from scratch, by simply replacing the softmax layer with a MCE. The resulting
CEN can outperform the original CNN in both convergence rate and accuracy.

6 Conclusion and Future Work

We developed a scalable hyperparameter learning framework for CMEs with
categorical targets based on Rademacher complexity bounds. These bounds reveal
a novel data-dependent quantity r(θ, λ) that reflect its model complexity. We
use this measure as an regularization term in addition to the empirical loss
for hyperparameter learning. In parallel light to the case with regularized least
squares, it remains to be established what type of prior, if any, could correspond to
such a regularizer. This would lead to a Bayesian interpretation of our framework.
We also envision that such a quantity could potentially be generalized to CMEs
with arbitrary targets, which would enable hyperparameter learning for general
conditional mean embeddings in a way that is optimized for the prediction task.
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A Convergence Theorems

In this section we provide theorems and derivations that establish convergence
properties of MCEs. Most of the convergence results hold due to MCEs being
special cases of CMEs, whose empirical estimates are known to converge. We
include this section for completeness.

Suppose {Xi, Yi} ∼ PXY are iid for all i ∈ Nn, with Xi : Ω → X and
Yi : Ω → Y. We wish to estimate some target function f : X → R by f̂ : X → R
empirically with a dataset {Xi, Yi}ni=1 of size n ∈ N+. Since f̂ is empirically
estimated, it is a random function over the possible data observation events
ω ∈ Ω. The aim is to provide a sense of the stochastic convergence of f̂ to f by
providing an upper bound of their absolute pointwise difference |f̂(x)−f(x)|, and
show that such an upper bound converges to zero at some stochastic rate. Such
an upper bound is provided by the convergence properties of CMEs. In particular,
the empirical CME stochastically converges to the CME at rate Op((nλ)−

1
2 +λ

1
2 ),

under the assumption that k(x, ·) ∈ image(CXX) [Song et al., 2009, Theorem 6].
That is,

∀x ∈ X , ∀ε > 0, ∃Mε > 0 s.t.

P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl

> Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε.

(14)

In practice, the assumption that k(x, ·) ∈ image(CXX) can be relaxed by
replacing UY |X = CY XC

−1
XX with UY |X = CY X(CXX + λI)−1 [Song et al., 2013].

This will apply to all subsequent theorems in this section.

Theorem 5 (Pointwise and Uniform Convergence of Conditional Mean
Embedding Estimators). Suppose that k(x, ·) is in the image of CXX and
that there exists 0 ≤ γ(x) <∞ such that for some estimator function f̂ : X → R
and target function f : X → R,

|f̂(x)− f(x)| ≤ γ(x)
∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
,∀x ∈ X , (15)

then the estimator f̂ converges pointwise to the target f at a stochastic rate of at
least Op((nλ)−

1
2 + λ

1
2 ). Further, if γ(x) = γ is independent of x ∈ X , then this

convergence is uniform.

Proof. Suppose that there exists 0 ≤ γ(x) <∞ such that (15) is satisfied. That
is, the inequality (15) holds for all possible data observations {Xi, Yi}ni=1 where
Xi : Ω → X , Yi : Ω → Y for all i ∈ Nn. For any constant C, the implication
statement

∥∥µ̂Y |X=x − µY |X=x

∥∥
Hδ
≤ C =⇒ |f̂(x) − f(x)| ≤ Cγ(x) holds for

all possible observation events ω ∈ Ω. Writing this explicitly in event space
translates this to a probability statement,

{ω ∈ Ω :
∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
≤ C} ⊆ {ω ∈ Ω : |f̂(x)− f(x)| ≤ Cγ(x)}

=⇒ P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
≤ C

]
≤ P

[
|f̂(x)− f(x)| ≤ Cγ(x)

]
.

(16)



Since we assume that k(x, ·) ∈ image(CXX), statement (14) is valid. By
letting C = Mε((nλ)−

1
2 + λ

1
2 ) in (16), we immediately have that the probability

inequality in statement (14) is also true if we replace ‖µ̂Y |X=x − µY |X=x‖ with
|f̂(x)− f(x)| and Mε with γ(x)Mε,

P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl

> Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε

=⇒ 1− P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
≤Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε

=⇒ P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
≤Mε

(
(nλ)−

1
2 + λ

1
2

)]
> 1− ε

=⇒ P
[
|f̂(x)− f(x)| ≤ γ(x)Mε

(
(nλ)−

1
2 + λ

1
2

)]
> 1− ε

=⇒ 1− P
[
|f̂(x)− f(x)| ≤ γ(x)Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε

=⇒ P
[
|f̂(x)− f(x)| > γ(x)Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε,

(17)

where we employed statement (16) between the third and fourth line for C =

Mε((nλ)−
1
2 + λ

1
2 ). Therefore, since Mε is arbitrary, define M̃ε(x) := γ(x)Mε so

that, with the above result, the statement (14) implies the following,

∀x ∈ X , ε > 0, ∃M̃ε(x) > 0 s.t. P
[∣∣f̂(x)−f(x)

∣∣ > M̃ε(x)
(

(nλ)−
1
2 +λ

1
2

)]
< ε.

(18)
In other words, the function f̂ stochastically converges pointwise to f with a

rate of at least Op((nλ)−
1
2 + λ

1
2 ). The convergence is pointwise as the constant

M̃ε(x) may be different for each point x ∈ X . If γ(x) = γ such that M̃ε(x) = M̃ε

does not depend on x ∈ X , then this stochastic convergence is uniform in its
domain X . ut

With theorem 5, we can now show the convergence of various estimators based
on the conditional mean embedding, as long as we can show that their estimator
error is upper bounded by a multiple of the conditional mean embedding error in
the RKHS norm. As such, we turn to the convergence of the empirical decision
probability function (4) below.

Theorem 6 (Convergence of Empirical Decision Probability Function).
Assuming that k(x, ·) is in the image of CXX , the empirical decision probability
function p̂c : X → R (4) converges uniformly to the true decision probability
pc : X → [0, 1] (3) at a stochastic rate of at least Op((nλ)−

1
2 + λ

1
2 ) for all

c ∈ Y = Nm.

Proof. Consider the pointwise absolute difference between the decision probability
and its empirical estimate,

|p̂c(x)− pc(x)| = |〈µ̂Y |X=x,1c〉 − 〈µY |X=x,1c〉|
= |〈µ̂Y |X=x − µY |X=x,1c〉|
≤
∥∥µ̂Y |X=x − µY |X=x

∥∥
Hδ

∥∥1c
∥∥
Hδ
,

(19)



where the last inequality follows from the Cauchy Schwarz inequality in a Hilbert
space.

Since 1c = δ(c, ·) and using the fact that δ is a reproducing kernel, we have
that for all c ∈ Y = Nm.∥∥1c

∥∥2
Hδ

= 〈1c,1c〉 = 〈δ(c, ·), δ(c, ·)〉 = δ(c, c) = 1. (20)

Therefore, by theorem 5 with γ(x) = 1 independent of x ∈ X , p̂c converges
uniformly to pc at a stochastic rate of at least Op((nλ)−

1
2 +λ

1
2 ) for all c ∈ Y = Nm.

ut

The above proof is for uniform convergence over all x ∈ X at the stochastic
rate of at least Op((nλ)−

1
2 +λ

1
2 ). Intuitively, however, for stationary zero-centered

kernels like the Gaussian kernel, the convergence rate may be higher at regions
of high data density, since the kernel effects, being centered around the training
data, are stronger at these regions. The worse case convergence rate described
here in the theorem would be a tight lower bound for regions in X with lower data
density, where the kernel effects have decayed and most empirical probabilities
are smaller and further from summing up to one.

Because the label space Y = Nm is discrete and finite, bounded functions
g ∈ Hδ in the RKHS are equivalent to their vector representations g := {g(c)}mc=1,
because one can always write g =

∑m
c=1 g(c)δ(c, ·). In other words, there is an

isomorphism between Hδ and Rm. A convenient consequence is that inner products
in the RKHS are simply the usual dot products in a Euclidean space, since

〈g1, g2〉Hδ =

〈 m∑
c=1

g1(c)δ(c, ·),
m∑
c′=1

g2(c′)δ(c′, ·)
〉
Hδ

=

m∑
c=1

m∑
c′=1

g1(c)g2(c′)〈δ(c, ·), δ(c′, ·)〉Hδ

=

m∑
c=1

g1(c)g2(c)

= g1 · g2.

(21)

Consequently, the RKHS norm for bounded functions g ∈ Hδ is simply the
`2-norm of its vector representation g,

‖g‖Hδ = ‖g‖`2 . (22)

A special and convenient result that arises due to this discrete and finite label
space is that the decision probabilities and its empirical estimate are simply the
conditional mean embeddings and its empirical estimate.

Lemma 1 (Decision Probabilities are Conditional Mean Embeddings).
The decision probability for class c ∈ Nm given an example x ∈ X is the conditional
mean embedding with l = δ conditioned at example x evaluated at label c,

pc(x) := P[Y = c|X = x] = µY |X=x(c). (23)



Therefore, p(x) ≡ µY |X=x.

Proof. Since indicator functions are the canonical features of the label RKHS
Hδ, we employ the fact that expectations of indicator functions are probabilities
to prove this claim,

µY |X=x(c) :=E[l(Y, c)|X = x] = E[δ(Y, c)|X = x]

=E[1c(Y )|X = x] = P[Y ∈ {c}|X = x]

=P[Y = c|X = x] =: pc(x).

(24)

ut

Lemma 2 (Empirical Decision Probabilities are Empirical Conditional
Mean Embeddings). The empirical decision probability (4) for class c ∈ Nm
given an example x ∈ X is the empirical conditional mean embedding with l = δ
conditioned at example x evaluated at label c,

p̂c(x) = µ̂Y |X=x(c). (25)

Therefore, p̂(x) ≡ µ̂Y |X=x.

Proof. Let the canonical feature maps of X and Y be φ(x) = k(x, ·) and ψ(y) =
l(y, ·) = δ(y, ·), then the empirical conditional mean embedding is defined by

µ̂Y |X=x := ÛY |Xφ(x). (26)

By the reproducing property, the evaluation of µ̂Y |X=x ∈ Hl is given by a
dot product,

µ̂Y |X=x(c) = 〈l(c, ·), µ̂Y |X=x〉
= 〈ψ(c), µ̂Y |X=x〉
= ψ(c)T µ̂Y |X=x

= ψ(c)T ÛY |Xφ(x)

= ψ(c)TΨ(K + nλI)−1ΦTφ(x)

= lTc (K + nλI)−1k(x),

(27)

where lc := {l(yi, c)}ni=1 and kx := {k(xi, x)}ni=1. While the notation lc is usually
avoided due do its similarity to 1c, in this context they happen to represent equal
quantities,

lc := {l(yi, c)}ni=1 = {δ(yi, c)}ni=1 = {1c(yi)}ni=1 =: 1c. (28)

The claim then immediately follows by the definition of our decision probability
estimator,

µ̂Y |X=x(c) = 1Tc (K + nλI)−1k(x) =: p̂c(x). (29)

ut



Lemma 2 shows that the decision function f(x) (5) of a MCE is no more than
the empirical conditional mean embedding estimated from the data.

Since we have identified the equivalence of decision probabilities and the
conditional mean embedding, we can now also show that the empirical decision
probability vector also converges to the true decision probability vector.

Lemma 3 (Uniform Convergence of Empirical Decision Probability
Vector Function in `1 and `2). Assuming that k(x, ·) is in the image of
CXX , the empirical decision probability vector function p̂ : X → Rm (5) con-
verges uniformly to the true decision probability vector function p : X → [0, 1]m

in the `1-norm and `2-norm, where p(x) := {pc(x)}mc=1, at a stochastic rate of at
least Op((nλ)−

1
2 + λ

1
2 ) for all c ∈ Y = Nm.

Proof. For convergence in `1, we simply extend theorem 6, which proved that
each entry of p̂(x) converges pointwise uniformly at a rate of Op((nλ)−

1
2 + λ

1
2 )

to the corresponding entry of p(x). Since each entry converges stochastically at
a rate of Op((nλ)−

1
2 + λ

1
2 ), then so does the entire vector. More formally, from

(19) and (20), the `1-norm of the difference can be bounded,

‖p̂(x)− p(x)‖`1 :=

m∑
c=1

|p̂c(x)− pc(x)|

≤
m∑
c=1

∥∥µ̂Y |X=x − µY |X=x

∥∥
Hδ

=m
∥∥µ̂Y |X=x − µY |X=x

∥∥
Hδ
.

(30)

Therefore, by theorem 5 with γ(x) = m independent of x ∈ X , we have
uniform convergence in `1 where we replace all instances of |f̂(x)− f(x)| in the
proof of theorem 5 with ‖p̂(x)− p(x)‖`1 .

For convergence in `2, we show that the `2-norm of the difference between
the true and empirical decision probability vector functions is the same as the
RKHS norm of the difference between the true and empirical conditional mean
embedding, which converges to zero at a stochastic rate of at leastOp((nλ)−

1
2 +λ

1
2 )

for all x ∈ X and c ∈ Y = Nm by (14). To this end, we use lemma 1 and lemma 2
and write

‖p̂(x)− p(x)‖`2 = ‖{p̂c(x)}mc=1 − {pc(x)}mc=1‖`2
= ‖{p̂c(x)− pc(x)}mc=1‖`2
= ‖{µ̂Y |X=x(c)− µY |X=x(c)}mc=1‖`2
= ‖µ̂Y |X=x − µY |X=x‖`2
= ‖µ̂Y |X=x − µY |X=x‖Hδ ,

(31)

where the last equality comes from (22) and the fact that the empirical and true
conditional mean embeddings are bounded functions in the RKHS. Again, by
theorem 5 with γ(x) = 1 independent of x ∈ X , we have uniform convergence in
`2. ut



A.1 Information Entropy of MCEs

The MCE provides decision probabilities instead of just a single label prediction.
Such a probabilistic classifier allows us to quantify the uncertainty of its pre-
dictions for any given example x ∈ X through the information entropy. This is
ideal for detecting the decision boundaries of the classifier and areas of low data
density.

We present two main approaches for inferring the information entropy from
the classifier. Specifically, we infer estimates for the information entropy of the
possible labels Y for a given example X = x,

h(x) := H[Y |X = x] = −
m∑
c=1

pc(x) log pc(x). (32)

The first approach is straight forward, which involves simply computing the
information entropy with the clip normalized probabilities (6), at the query point
x ∈ X ,

h̃(x) := −
m∑
c=1

p̃c(x) log p̃c(x). (33)

We call (33) the clip-normalized information entropy. Since p̃c(x) converges
pointwise to pc(x) with increasing data, h̃(x) also converges pointwise to h(x).

Just as decision probabilities can be expressed as an expectation of indicator
functions, information entropy can be expressed as expected information,

H[Y |X = x] = −
m∑
c=1

P[Y = c|X = x] log P[Y = c|X = x]

= E[− log P[Y |X = x]|X = x]

= E[ux(Y )|X = x],

(34)

where ux(y) := − log P[Y = y|X = x] is the information (in nats) we would
gain when we discover that example x actually has label y. Note that while
P[Y = c|X = x] is a constant, we employ the shorthand notation P[Y |X = x] for
the random variable g(Y ) where g(y) := P[Y = y|X = x]. If ux : Nm → R is in
the RKHS Hδ, then we know that this expectation can also be approximated by
〈µ̂Y |X=x, ux〉. This is the basis of our second approach.

Assuming that P[Y = y|X = x] is never exactly zero for all labels y ∈ Y
and examples x ∈ X , then ux(y) is bounded on its discrete domain Nm. We can
thus write ux =

∑m
c=1− log P[Y = c|X = x]δ(c, ·) which shows that ux is in the

span of the canonical kernel features and is thus in the RKHS. Hence, similar to
the case with decision probabilities, with ux ∈ Hδ and ux := {ux(yi)}ni=1 we let
g = ux in (2) and estimate h(x) by

〈µ̂Y |X=x, ux〉 = uTx (K + nλI)−1k(x). (35)

Unfortunately, ux is not known exactly, since P[Y = y|X = x] is not known
exactly. Instead, since p̂c(x) is a consistent estimate for P[Y = c|X = x] by



theorem 6, we propose to replace ux(y) with the information of p̂y(x). However,
we cannot simply take the log of this estimator, as p̂y(x) may produce non-positive
estimates to the prediction probabilities. The straight forward way to mitigate this
problem is to clip p̂y(x) from the bottom by a very small number, before taking
the log. However, experiments show that this produces non-smooth estimates
over X and the degree of smoothness varies drastically between different choices
of that small number. Instead, in virtue of the fact that limp→0−p log p = 0 even
though limp→0− log p =∞, we simply define the information estimate ûx(y) as
zero if the empirical decision probability is non-positive,

ûx(y) :=

{
− log p̂y(x) if p̂y(x) > 0,

0 otherwise.
(36)

It remains to show that ûx ∈ Hδ. Indeed, the identity ûx =
∑m
c=1 ûx(c)δ(c, ·)

holds and thus ûx is in the span of the kernel canonical features. We then arrive
at the following estimate for h(x),

ĥ(x) := 〈µ̂Y |X=x, ûx〉 = ûTx (K + nλI)−1k(x), (37)

where ûx := {ûx(yi)}ni=1. Similar to the case with decision probabilities (3), the
information entropy estimate (37) is not guaranteed to be non-negative. However,
in practice these negative values are close to zero. Furthermore, negative estimated
information entropy implies that the model is very confident about its prediction,
and it suffices to simply clip the entropy at zero if strict information entropy is
required.

Since this estimator is now based on the inner product between the empirical
conditional mean embedding and another empirically estimate function, instead of
between the empirical conditional mean embedding and a known function like the
decision probability estimate, it is not immediately clear that such an estimator
converges. Nevertheless, intuition tells us that the inner product between two
converging quantities should converge. We proceed to show that this intuition is
correct.

Theorem 7 (Convergence of Empirical Information Entropy Function).
Assuming that k(x, ·) is in the image of CXX , the empirical information entropy
function ĥ : X → R (37) converges pointwise to the true information entropy
function h : X → [0,∞) at a stochastic rate of at least Op((nλ)−

1
2 + λ

1
2 ).

Proof. Since we are interested in the asymptotic properties of our estimators
when n → ∞, and we have proved that the empirical decision probabilities
converges to the true probabilities (theorem 6), the condition p̂c(x) > 0 holds
for large n such that we simply have ûx(c) = − log p̂c(x). That is, the effects of
clipping for the information estimate (36) vanishes.



Consider the pointwise absolute difference between the empirical and true
information entropy,

|ĥ(x)− h(x)| = |〈µ̂Y |X=x, ûx〉Hδ − 〈µY |X=x, ux〉Hδ |
= |〈µ̂Y |X=x, ûx〉Hδ − 〈µ̂Y |X=x, ux〉Hδ

+ 〈µ̂Y |X=x, ux〉Hδ − 〈µY |X=x, ux〉Hδ |
≤ |〈µ̂Y |X=x, ûx〉Hδ − 〈µ̂Y |X=x, ux〉Hδ |

+ |〈µ̂Y |X=x, ux〉Hδ − 〈µY |X=x, ux〉Hδ |
= |〈µ̂Y |X=x, ûx − ux〉Hδ |+ |〈µ̂Y |X=x − µY |X=x, ux〉Hδ |
≤ ‖µ̂Y |X=x‖Hδ‖ûx − ux‖Hδ + ‖µ̂Y |X=x − µY |X=x‖Hδ‖ux‖Hδ ,

(38)
where the we used the triangle inequality and Cauchy Schwarz inequality in a
Hilbert space respectively. Since the kernel l = δ is bounded, so is µ̂Y |X=x(c) =∑n
i=1 wiδ(yi, c) for some embedding weights wi and all c ∈ Nm, and thus its

RKHS norm is finite for all n ∈ Nn. Similarly, assuming that pc(x) is never
exactly zero, ux(c) is also finite for all c ∈ Nm and thus so is its RKHS norm.
We already know that ‖µ̂Y |X=x − µY |X=x‖Hδ stochastically converges to zero
at the rate Op((nλ)−

1
2 + λ

1
2 ) (14). Thus, it remains to bound ‖ûx − ux‖Hδ by a

multiple of ‖µ̂Y |X=x − µY |X=x‖Hδ .

To this end, we first use lemma 1 and lemma 2 and to express the theoretical
and empirical information as the negative log of the embedding, so that it is
explicitly written as a function of c ∈ Y in Hδ indexed by x ∈ X ,

ux(c) = − log pc(x) = − logµY |X=x(c),

ûx(c) = − log p̂c(x) = − log µ̂Y |X=x(c).
(39)

Since log is a concave function, we have the property that log a − log b ≤
1
b (a− b). This allows us to bound |ûx(c)− ux(c)| by |µ̂Y |X=x(c)− µY |X=x(c)| for
all c ∈ Nm,

|ûx(c)− ux(c)| = | log µ̂Y |X=x(c)− logµY |X=x(c)|

≤ 1

|µY |X=x(c)|
|µ̂Y |X=x(c)− µY |X=x(c)|

≤ αx|µ̂Y |X=x(c)− µY |X=x(c)|,

(40)

where we define αx := maxc∈Nm
1

|µY |X=x(c)|
, which is well defined as the condi-

tional mean embedding is bounded. Since the RKHS norm of bounded functions



in Hδ is simply the `2-norm of their vector representations (22), we have

‖ûx − ux‖2Hδ = ‖ûx − ux‖2`2

=

m∑
c=1

|ûx(c)− ux(c)|2

≤
m∑
c=1

α2
x|µ̂Y |X=x(c)− µY |X=x(c)|2

≤ α2
x

m∑
c=1

|µ̂Y |X=x(c)− µY |X=x(c)|2

≤ α2
x‖µ̂Y |X=x − µY |X=x‖2`2

≤ α2
x‖µ̂Y |X=x − µY |X=x‖2Hδ .

(41)

Therefore, ‖ûx − ux‖Hδ ≤ αx‖µ̂Y |X=x − µY |X=x‖Hδ , and (38) becomes

|ĥ(x)− h(x)| ≤ ‖µ̂Y |X=x‖Hδ‖ûx − ux‖Hδ + ‖µ̂Y |X=x − µY |X=x‖Hδ‖ux‖Hδ
= αx‖µ̂Y |X=x‖Hδ‖µ̂Y |X=x − µY |X=x‖Hδ

+ ‖µ̂Y |X=x − µY |X=x‖Hδ‖ux‖Hδ
= (αx‖µ̂Y |X=x‖Hδ + ‖ux‖Hδ)‖µ̂Y |X=x − µY |X=x‖Hδ .

(42)
Hence, with γ(x) = αx‖µ̂Y |X=x‖Hδ + ‖ux‖Hδ , theorem 5 implies that ĥ

converges pointwise to h at a stochastic rate of at least Op((nλ)−
1
2 + λ

1
2 ). ut



B Learning Theoretic Bounds

In this section we derive RCBs for MCEs, and show that it can be used in con-
junction with cross entropy loss to bound the expected risk with high probability.

B.1 Rademacher Complexity Bounds

Suppose a set of training data {xi, yi}ni=1 is drawn from PXY in an iid fashion. We
denote the one hot encoded target labels of {yi}ni=1 by yi := {1c(yi)}mc=1 ∈ {0, 1}m

and Y :=
[
y1 y2 · · · yn

]T ∈ {0, 1}n×m. Similarly, let y ∈ {0, 1}m denote the one
hot encoded target labels for a generic label y ∈ Y. Let kθ : X × X → [0,∞) be
a family of positive definite kernels indexed by θ ∈ Θ. As before, we define the
shorthand notation for the gram matrices Kθ := {kθ(xi, xj) : i ∈ Nn, j ∈ Nn} and
kθ(x) := {kθ(xi, x) : i ∈ Nn}, and λ denotes the regularization hyperparameter
of the conditional mean embedding (1). The MCE has a predictor form p̂(x) =
fθ,λ(x) (5) defined by

fθ,λ(x) := YT (Kθ + nλI)−1kθ(x), (43)

where each entry of the predictor fθ,λ(x) is the decision probability estimate
for pc(x). This defines the function class of the predictor over the kernel family
and a set of regularization hyperparameters for any set of training observations
{xi, yi}ni=1,

Fn(Θ,Λ) := {fθ,λ(x) : θ ∈ Θ, λ ∈ Λ}. (44)

The predictor form (43) is linear in the reproducing kernel Hilbert space Hkθ
induced by kθ in the sense that

fθ,λ(x) := WT
θ,λφθ(x),

Wθ,λ := Φθ(Kθ + nλI)−1Y,
(45)

where we decompose kθ(x) = ΦTθ φθ(x) by the reproducing property. By lemma 2,
fθ,λ(x) = p̂θ,λ(x) = µ̂

(θ,λ)
Y |X=x = Û (θ,λ)

Y |X φθ(x). Therefore, we have that Û (θ,λ)
Y |X ≡

WT
θ,λ. Throughout this paper, inner products are defined in the Hilbert-Schmidt

sense, which induces the Hilbert-Schmidt norm ‖ · ‖HS and generalises the
Frobenius inner product with induced norm ‖ ·‖tr for finite dimensional operators.
Nevertheless, while they refer to the same quantity, we will use the standard
notations ‖Ûθ,λY |X‖HS as per the literature in Hilbert space embeddings and
‖Wθ,λ‖tr as per the literature for linear classifiers.

Theorem 8 (MCE Rademacher Complexity Bound). Suppose that the
trace norm ‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Further suppose that the
canonical feature map is bounded in RKHS norm ‖φθ(x)‖2Hkθ = kθ(x, x) ≤ α2,
α > 0, for all x ∈ X , θ ∈ Θ. For any set of training observations {xi, yi}ni=1,
the Rademacher complexity of the class of MCEs Fn(Θ,Λ) (44) defined over
θ ∈ Θ, λ ∈ Λ is bounded by

Rn(Fn(Θ,Λ)) ≤ 2αρ. (46)



Proof. The Rademacher complexity [Bartlett and Mendelson, 2002, Definition 2]
of the function class Fn(Θ,Λ) is

Rn(Fn(Θ,Λ)) :=E

[
sup

θ∈Θ,λ∈Λ

∥∥∥ 2

n

n∑
i=1

σifθ,λ(Xi)
∥∥∥]

=
2

n
E

[
sup

θ∈Θ,λ∈Λ

∥∥∥ n∑
i=1

σifθ,λ(Xi)
∥∥∥], (47)

where σi are iid Rademacher random variables, taking values in {−1, 1} with
equal probability, and Xi are iid random variables from the same distribution
PX as our training data. We further define σ := {σi}ni=1.

We first bound the term inside the suprenum using the Cauchy Schwarz
inequality, ∥∥∥ n∑

i=1

σifθ,λ(Xi)
∥∥∥ =

∥∥∥ n∑
i=1

σiW
T
θ,λφθ(Xi)

∥∥∥
=
∥∥∥WT

θ,λΦθσ
∥∥∥

≤ ‖Wθ,λ‖tr‖‖Φθσ‖
≤ ‖Wθ,λ‖tr‖‖ΦTθ ‖tr‖σ‖
= ‖Wθ,λ‖tr‖‖Φθ‖tr‖σ‖,

(48)

where we define the random operator Φθ :=
[
φ(X1) φ(X2) · · · φ(Xn)

]
. Note that

this is distinct from Φθ, whose columns are the canonical RKHS features at
the training observations and is not random. Now, random or not, entries of
σ := {σi}ni=1 are either −1 or 1, so its norm is simply ‖σ‖ =

√
n. We can then

also compute the trace norm of the other random component Φθ,

‖Φθ‖tr :=
√

trace(ΦTθ Φθ)

=
√

trace(Kθ)

=

√√√√ n∑
i=1

kθ(Xi, Xi)

=
√
n

√√√√ 1

n

n∑
i=1

kθ(Xi, Xi)

≤
√
n

√√√√ 1

n

n∑
i=1

α2

=
√
nα,

(49)

where the inequality comes from the assertion that kθ(x, x) ≤ α2 for all x ∈
X , θ ∈ Θ. This bounds all the random components in the expectation by a
constant, so that later the expectation can vanish.



Using the assertion that ‖Wθ,λ‖tr ≤ ρ for all θ ∈ Θ, λ ∈ Λ, we can now bound
the Rademacher complexity,

Rn(Fn(Θ,Λ)) =
2

n
E

[
sup

θ∈Θ,λ∈Λ

∥∥∥ n∑
i=1

σifθ,λ(Xi)
∥∥∥]

≤ 2

n
E

[
sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr‖‖Φθ‖tr‖σ‖

]
=

2

n

√
nE

[
sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr‖‖Φθ‖tr

]
≤ 2

n

√
n
√
nαE

[
sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr

]
≤ 2αE

[
sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr

]
= 2α sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr

≤ 2αρ.

(50)

ut

Theorem 8 provides a generic Rademacher complexity bound for any type of
MCE with a bounded positive definite kernel and bounded trace norm. One of
the most widely used kernels in practice are the family of stationary kernels. We
provide a more specific bound for the case of stationary kernels below.

Corollary 1 (Rademacher Complexity Bound for Stationary Kernels).
Suppose that the trace norm ‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Suppose
that kθ is a family of positive definite stationary kernels. That is, kθ(x, x′) =
k̃θ(‖x− x′‖) for some real-valued function k̃ : [0,∞)→ [0,∞). Select θ̃ ∈ Θ and
define Θ(θ̃) such that kθ(0, 0) ≤ kθ̃(0, 0) for all θ ∈ Θ(θ̃). For any θ̃ ∈ Θ and set
of training observations {xi, yi}ni=1, the Rademacher complexity of the resulting
class of MCEs Fn(Θ(θ̃), Λ) defined over θ ∈ Θ(θ̃), λ ∈ Λ is bounded by

Rn(Fn(Θ(θ̃), Λ)) ≤ 2ρ
√
kθ̃(0, 0). (51)

Proof. Observe that kθ̃(0, 0) is an upper bound for kθ(x, x) for all x ∈ X and
θ ∈ Θ,

kθ(x, x) = k̃θ(‖x− x‖) = k̃θ(‖0‖) = kθ(0, 0) ≤ kθ̃(0, 0). (52)

We simply choose α2 = kθ̃(0, 0) in theorem 8. ut

Corollary 1 motivates the choice α2(θ) = kθ(0, 0) = σ2
f for stationary radial

basis type kernels such as the Gaussian or Matérn kernels, where σf is the
sensitivity [Rasmussen and Williams, 2006] of the stationary kernel, which we
employ in our learning algorithm when the kernel is stationary.



B.2 Expected Risk Bounds

In order to quantify the performance of the MCE, we specify a loss function
L : Y × A → [0,∞), where L(y, f(x)) measures the loss of a decision function
f : X → A on a paired example x ∈ X and label y ∈ Y. In the MCE context,
the decision function is fθ,λ : X → Rm, with A = Rm and Y = Nm. The loss
function is to capture the desire for yT fθ,λ(x) = f

(θ,λ)
y (x) to be high for all likely

test points x ∈ X and y ∈ Y.
A suitable choice of the loss function in the probabilistic multiclass classifica-

tion context is the cross entropy loss,

L(y, f(x)) := − logyT f(x) = − log fy(x), (53)

where f(x) are the inferred decision probability estimates of each class for the
example x ∈ X . Since logarithms explode at zero, in practice the probability
estimate is often clipped from below at a predetermined threshold ε ∈ (0, 1). Fur-
thermore, it is also convenient to clip the probability estimate from above at one to
avoid negative losses. Consequently, with the notation [ · ]1ε := min{max{ · , ε}, 1},
we define the effective cross entropy loss as

Lε(y, f(x)) := − log [yT f(x)]1ε = − log [fy(x)]1ε . (54)

In this way, our cross entropy loss (54) is both bounded and positive. In our
subsequent analysis, we require that our loss function has an image in [0, 1]. To
do this, we simply rescale the loss function by dividing it by its largest value,

L̄ε(y, f(x)) :=
1

Mε
Lε(y, f(x)) = − 1

Mε
log [fy(x)]1ε ,

Mε := − log ε.

(55)

We will refer to (55) as the normalized cross entropy loss. We then further
define the centered normalized cross entropy loss,

L̃ε(y, f(x)) := L̄ε(y, f(x))− L̄ε(y,0) = − 1

Mε
log [fy(x)]1ε − 1. (56)

With the normalized cross entropy loss (55) as our loss function, we now
employ Theorem 8 of Bartlett and Mendelson [2002] for this loss and provide a
bound for the expected normalized cross entropy loss for an unseen test example.

Lemma 4 (Expected Risk Bound). For any integer n ∈ N+ and any set
of training observations {xi, yi}ni=1, with probability 1 − β over iid samples
{Xi, Yi}ni=1 of length n from PXY , every f ∈ Fn(Θ,Λ) satisfies

1

Mε
E[Lε(Y, f(X))] ≤ 1

nMε

n∑
i=1

Lε(Yi, f(Xi)) +Rn(L̃ε ◦ Fn(Θ,Λ)) +

√
8

n
log

2

β
.

(57)



Proof. Since L̄ε : Y×A → [0, 1] has a unit range and dominates itself, L̄ε(y, f(x)) ≤
L̄ε(y, f(x)), the result follows directly from Theorem 8 of Bartlett and Mendelson
[2002]. We then use the definition (55) for the normalized cross entropy loss. ut

Equivalently, by definition (44), this result holds for f = fθ,λ(x) for every θ ∈
Θ, λ ∈ Λ. The bound (57) involves the Rademacher complexity Rn(L̃ε ◦Fn(Θ,Λ))
of the centered normalized cross entropy loss applied onto the class of functions
Fn(Θ,Λ), and not just the Rademacher complexity Rn(Fn(Θ,Λ)) of the class
of functions Fn(Θ,Λ) itself. In theorem 8, we have bounded the latter. We now
proceed to bound the former with the latter (46), so that the upper bound in
lemma 4 can be written in terms of the latter.

Lemma 5 (Rademacher Complexity Bound with Cross Entropy Loss).
For any integer n ∈ N+ and any set of training observations {xi, yi}ni=1, the
Rademacher complexity of the class of cross entropy loss applied onto the MCE
is bounded by

Rn(L̃ε ◦ Fn(Θ,Λ)) ≤ 2
1

ε log 1
ε

Rn(Fn(Θ,Λ)), (58)

where L̃ε ◦ Fn(Θ,Λ) := {(x, y) 7→ L̃ε(y, fθ,λ(x)) : θ ∈ Θ, λ ∈ Λ}.

Proof. Let ψ̃(z) := − 1
Mε

log [z]1ε−1 so that ψ̃ : R→ R satisfies ψ̃(0) = 0. Then, the
centered normalized cross entropy loss can be written as L̃ε(y, f(x)) = ψ̃(fy(x)). In
particular, ψ̃(z) is piecewise differentiable. We proceed to show that ψ̃ is Lipschitz
by showing that the suprenum of its absolute derivative over all piecewise regions
is finite, and thus infer its Lipschitz constant.

The real-valued function ψ̃ can be split into three piecewise regions over the
real domain,

ψ̃(z) =


0, z ∈ (−∞, ε],
− 1
Mε

log z − 1, z ∈ (ε, 1),

−1, z ∈ [1,∞).

(59)

The derivative over the regions z ∈ (−∞, ε] and z ∈ [1,∞) is thus 0 and the
local Lipschitz constant over that region is thus 0. We then focus on the other
region,

sup
z∈(ε,1)

|ψ̃′(z)| = sup
z∈(ε,1)

∣∣∣∣− 1

zMε

∣∣∣∣ = sup
z∈(ε,1)

1

zMε
=

1

εMε
=

1

ε log 1
ε

. (60)

Thus, ψ̃ is Lipschitz with a Lipschitz constant of Lψ̃ = 1
ε log 1

ε

.
For a given general loss function L, Ledoux and Talagrand [2013, Corollary

3.17] proved that if there exists a Lipschitz real-valued function ψ : R → R,
ψ(0) = 0, with constant Lψ such that L(y, f(x)) = ψ(fy(x)), then Rn(L ◦ F ) ≤
2LψRn(F ) for any class of functions F . This result is also described in Bartlett
and Mendelson [2002, Theorem 12.4].



Applying this result to our loss function with L = L̃ε with ψ = ψ̃ and
F = Fn(Θ,Λ), we have Rn(L̃ε ◦ Fn(Θ,Λ)) ≤ 2Lψ̃Rn(Fn(Θ,Λ)), which proves
the claim. ut

The bound (58) in lemma 5 will be the bridge that relates the expected cross
entropy loss over our function class to the Rademacher complexity of our function
class. We now proceed to state the main theorem which forms the backbone of
our learning algorithm for the MCE.

Lemma 6 (MCE ε-General Expected Risk Bound). Suppose that the trace
norm ‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Further suppose that
the canonical feature map ‖φθ(x)‖2Hkθ = kθ(x, x) ≤ α2, α > 0, is bounded in
RKHS norm for all x ∈ X , θ ∈ Θ. For any integer n ∈ N+ and any set of
training observations {xi, yi}ni=1, with probability of at least 1−β over iid samples
{Xi, Yi}ni=1 of length n from PXY , every f ∈ Fn(Θ,Λ) satisfies

1

Mε
E[Lε(Y, f(X))] ≤ 1

nMε

n∑
i=1

Lε(Yi, f(Xi)) + 4
1

ε log 1
ε

αρ+

√
8

n
log

2

β
, (61)

for any ε ∈ (0, 1). Equivalently, the bound (61) holds for f = fθ,λ(x) for every
θ ∈ Θ, λ ∈ Λ.

Proof. From theorem 8, we have Rn(Fn(Θ,Λ)) ≤ 2αρ. Further, from lemma 5,
we have Rn(L̃ε ◦Fn(Θ,Λ)) ≤ 2 1

ε log 1
ε

Rn(Fn(Θ,Λ)). These are both deterministic

inequalities, leading to Rn(L̃ε ◦ Fn(Θ,Λ)) ≤ 4 1
ε log 1

ε

αρ. We then apply this
inequality to lemma 4, which proves the claim. ut

Similar to many learning theoretic bounds, the expected risk bound (61) is
composed of three qualitatively different terms. The first term is a training loss
or data fit term, which is a measure of how poorly the decision function f is
performing on a given training dataset. The second term is a model complexity
or regularization term, which measures how complicated the model is. In this
case, the model complexity is measured by the Rademacher complexity, which
captures the expressiveness of the function class by quantifying how well the
function class is able to shatter noise. The third term is a statistical constant
which plays no specific role to the function class.

We will eventually be minimizing the first two terms over some class of
functions f ∈ Fn(Θ,Λ) with some approach, as a proxy to minimizing the actual
expected risk. It would be fruitful to develop an intuition for the tightness of the
bound from the contributions of the training loss term and the model complexity
term. Since, like the expected loss, the training loss term is always in the unit
range [0, 1], we focus on understanding the tightness of the bound contributed
from the complexity term.

Consider a clipped cross entropy loss with either a very small clipping factor
ε ≈ 0, or a very large clipping factor ε ≈ 1. In these scenarios, ε log 1

ε would be
very small, so that the coefficient on the complexity term would then be very



large, regardless of what the complexity bound factors α and ρ are. As a result,
intuitively, this bound is unlikely to be tight due to the large coefficient on the
complexity term.

Consequently, it would then be natural to consider a middle-ground choice of
the cross entropy loss where this bound is the most tight by varying ε ∈ (0, 1).
Since ε log 1

ε is maximized at ε = 1
e for a maximal value of 1

e , such a choice in the
clipping factor would indeed yield the tightest bound for the complexity bound
in terms of the bounding slack of the result stated in lemma 5.

This is great news for the complexity term. What about the training loss
term? Intuition tells us that, with a clipping factor of ε = e−1 that is slightly
more than a third of the way into the interval (0, 1) from zero, the classifier is
not being penalised as strongly for assigning probabilities smaller than e−1 to
observed classes as compared to very small values of ε. Furthermore, beyond the
clipping point, assigning even lower probabilities to the observations does not
result in a higher loss. In practice, the cross entropy loss is renowned for its rapidly
growing penalty as the probability assignment gets lower, which is advantageous
when using a gradient based optimization scheme. In this case, the gradients are
large in magnitude and the classifier can adjust and fix these assignment errors
relatively quickly. In other words, by using a slightly larger clipping factor than
usual, we have seemingly lost the faster convergence properties from using a cross
entropy loss.

Nevertheless, observe that for such a clipping factor ε = e−1, the normal-
ization constant becomes Me−1 = − log 1

e = 1, so that it is effectively removed.
Furthermore, we also have the following simple upper bound for the cross entropy
loss clipped at ε = e−1,

L̄e−1(y, f(x)) = Le−1(y, f(x)) ≤ Lε(y, f(x)) ∀ε ∈ (0, e−1), x ∈ X , y ∈ Y. (62)

To see why inequality (62) holds, note that [fy(x)]1ε ≤ [fy(x)]1e−1 holds for
all ε ∈ (0, e−1), x ∈ X , y ∈ Y. Applying negative log to both sides yields the
inequality from definition (54).

Therefore, we propose to choose ε = e−1, and then replace replace Le−1 with
Lε for some new generic ε ∈ (0, e−1) much smaller than e−1 on the training
loss terms. In this way, we still maintain an upper bound for the training loss
term. While this bound would not necessarily be tight for high training losses,
the gradients from the high training loss would drive the system to a lower
training loss, where the bound would become tight again as equality holds in
(62) whenever fy(x) ≥ e−1.

The above intuition motivates the result in the following theorem.

Theorem 9 (MCE ε-Specific Expected Risk Bound). Suppose that the
trace norm ‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Further suppose that
the canonical feature map ‖φθ(x)‖2Hkθ = kθ(x, x) ≤ α2, α > 0, is bounded in
RKHS norm for all x ∈ X , θ ∈ Θ. For any integer n ∈ N+ and any set of
training observations {xi, yi}ni=1, with probability of at least 1−β over iid samples



{Xi, Yi}ni=1 of length n from PXY , every f ∈ Fn(Θ,Λ) satisfies

E[Le−1(Y, f(X))] ≤ 1

n

n∑
i=1

Lε(Yi, f(Xi)) + 4e αρ+

√
8

n
log

2

β
, (63)

for any ε ∈ (0, e−1). Equivalently, the bound (63) holds for f = fθ,λ(x) for every
θ ∈ Θ, λ ∈ Λ.

Proof. We first apply lemma 6 with ε = e−1,

E[Le−1(Y, f(X))] ≤ 1

n

n∑
i=1

Le−1(Yi, f(Xi)) + 4e αρ+

√
8

n
log

2

β
. (64)

For any ε ∈ (0, e−1), the inequality Le−1(Yi, f(Xi)) ≤ Lε(Yi, f(Xi)) holds
almost surely (a.s.) due to the deterministic inequality (62). These sets of in-
equalities together proves the claim. ut

B.3 Expected Risk Bounds for Hyperparameter Learning

We are now ready to use the result of theorem 9 to derive a specific expected
risk bound for a given choice of hyperparameters θ ∈ Θ and λ ∈ Λ of the MCE,
and not just for a general set of hyperparameters. We focus on kernels kθ that
are bounded over the domain X in the sense that for each θ ∈ Θ, kθ(x, x) <∞
for all x ∈ X .

For some kernel hyperparameters θ̃ ∈ Θ and regularization hyperparameter
λ̃ ∈ Λ, we construct a subset of hyperparameters (kernel hyperparameters and
regularization hyperparameters) Ξ(θ̃, λ̃) ⊆ Θ × Λ such that

Ξ(θ̃, λ̃) := {(θ, λ) ∈ Θ × Λ : ‖Wθ,λ‖tr ≤ ‖Wθ̃,λ̃‖tr,

sup
x∈X

kθ(x, x) ≤ α2(θ̃) := sup
x∈X

kθ̃(x, x)}. (65)

Clearly, this subset is non-empty, since (θ̃, λ̃) ∈ Ξ(θ̃, λ̃) is itself an element of
this subset. Note that α : Θ → R+ must necessarily exist as the kernel family
kθ is assumed to be bounded over the domain X . The class of MCEs over this
subset of hyperparameters is

Fn(Ξ(θ̃, λ̃)) := {fθ,λ(x) : (θ, λ) ∈ Ξ(θ̃, λ̃)}. (66)

Thus, we can assert that the trace norm ‖Wθ,λ‖tr ≤ ρ = ‖Wθ̃,λ̃‖tr is bounded
for all (θ, λ) ∈ Ξ(θ̃, λ̃), and that the canonical feature map ‖φθ(x)‖2Hkθ =

kθ(x, x) ≤ α2 = supx∈X kθ̃(x, x) is bounded in RKHS norm for all x ∈ X , (θ, λ) ∈
Ξ(θ̃, λ̃). By theorem 9, we can now claim the following.



Lemma 7 (MCE Expected Risk Bound for Hyperparameter Sets). For
any integer n ∈ N+ and any set of training observations {xi, yi}ni=1, with probabil-
ity 1−β over iid samples {Xi, Yi}ni=1 of length n from PXY , every (θ, λ) ∈ Ξ(θ̃, λ̃)
satisfies

E[Le−1(Y, fθ,λ(X))] ≤ 1

n

n∑
i=1

Lε(Yi, fθ,λ(Xi))

+ 4e
√

sup
x∈X

kθ̃(x, x)‖Wθ̃,λ̃‖tr +

√
8

n
log

2

β
,

(67)

for every ε ∈ (0, e−1), where

fθ,λ(x) :=YT (Kθ + nλI)−1kθ(x),

‖Wθ̃,λ̃‖tr =

√
trace

(
YT (Kθ̃ + nλ̃I)−1Kθ̃(Kθ̃ + nλ̃I)−1Y

)
.

(68)

Proof. We first apply theorem 9 with the choice of ρ = ‖Wθ̃,λ̃‖tr and α2 =
supx∈X kθ̃(x, x). The inequality (63) then only holds for a subset of kernel hyper-
parameters and regularizations (θ, λ) ∈ Ξ(θ̃, λ̃) as defined by (65). ut

Since inequality (67) holds for any (θ, λ) ∈ Ξ(θ̃, λ̃) and we know that (θ̃, λ̃) ∈
Ξ(θ̃, λ̃), we choose θ = θ̃ and λ = λ̃. We now arrive at our final result from which
we can bound the expected risk for a specific choice of hyperparameters θ ∈ Θ
and λ ∈ Λ.

Theorem 10 (MCE Expected Risk Bound for Hyperparameters). For
any integer n ∈ N+ and any set of training observations {xi, yi}ni=1, with proba-
bility 1− β over iid samples {Xi, Yi}ni=1 of length n from PXY , every θ ∈ Θ and
λ ∈ Λ satisfies

E[Le−1(Y, fθ,λ(X))] ≤ 1

n

n∑
i=1

Lε(Yi, fθ,λ(Xi)) + 4e r(θ, λ) +

√
8

n
log

2

β
, (69)

for every ε ∈ (0, e−1), where

fθ,λ(x) := YT (Kθ + nλI)−1kθ(x),

r(θ, λ) :=

√
trace

(
YT (Kθ + nλI)−1Kθ(Kθ + nλI)−1Y

)
sup
x∈X

kθ(x, x).
(70)

Proof. We first apply lemma 7 with the choice of θ = θ̃ and λ = λ̃. We then
replace the notation θ̃ → θ and λ̃→ λ back to avoid cluttered notation. Note that
this should not be confused with the general θ and λ from earlier theorems. ut



C Special Cases and Model Architectures

For MCEs, the modelling lies in the choice of the kernel family kθ : X × X → R
over the input space X . The only requirement for the kernel k is that it is
symmetric and positive definite, and thus we may construct richer and more
expressive kernel families in any way subject to such requirements. Once such
a kernel family is constructed, the kernel hyperparameters θ, as well as the
regularization hyperparameter λ, can be learned effectively using algorithm 1.

One way to construct richer and more expressive kernels is to compose them
from simpler kernels. For example, we can construct new kernels through convex
combinations or products of multiple simpler kernels [Genton, 2001]. Any new
parameters, such as coefficients for linear combinations of simpler kernels, can
be included into the kernel hyperparameters θ and learned in the same way as
before. Alternatively, there may be domain specific structures or representations
within the data that can be exploited. We can then construct the kernel family
by incorporating such structural representations into the kernel. Even better, we
can construct the kernel family so that it is capable or learning such structural
representations by itself, by parameterizing such representations into the kernel.

In this section, we focus on special cases of the MCE where the kernel
family is constructed through explicit feature maps. This construction allows the
incorporation of trainable domain specific structures and enables scalability to
larger datasets. We first begin by introducing the explicit MCE in appendix C.1,
where explicit feature maps can be learned while enabling scalability to larger
datasets. We then construct the CEN in appendix C.2, where the kernel family
is formed from multiple layers of learned representations before a simpler kernel
encodes their similarity for inference. Finally, we marry both constructions into
the explicit CEN in appendix C.3, which provides a scalable and more applicable
version of the deep CEN by placing a linear kernel on the network features.

In essence, we can categorise the MCE using two properties: the model width
and the model depth. The model width represents the dimensionality of the
feature space used to construct the linear decision boundaries. The model depth
represents the number of transformations used to map examples from the input
space to the feature space. By implicitly defining a high dimensional feature space
through simple transformations, typical nonlinear kernels produce classifiers that
have a shallow but wide architecture. In contrast, the three MCE variants to be
introduced in this section form other combinations of model architecture in both
depth and width. Of course, this characterization of architecture is not mutually
exclusive. For example, a polynomial kernel can be seen as a nonlinear kernel
where higher order polynomial features are implicitly defined, or as a linear kernel
on explicit polynomial features. We summarize those architectures in table 2.

C.1 Explicit Multiclass Conditional Embedding

The advantage of using a kernel-based classifier is that the kernel k allows us
to express nonlinearities in a simple way. It does this by implicitly mapping
the input space X to a high dimensional feature space Hk of non-linear basis



Table 2. Properties of MCE architectures

MCE Variant Width Depth Scalability Flexibility Typical Datasets

Implicit MCE Wide Shallow Low High High or Low d, Low n
Explicit MCE Narrow Shallow High Low Low d, High n
Implicit CEN Wide Deep Low High Structured d, Low n
Explicit CEN Narrow Deep High High Structured d, High n

functions such that decision boundaries become linear in that space. For many
kernels, such as the Gaussian kernel defined over the Euclidean space, the feature
space Hk has dimensionality that is uncountably infinite. Nevertheless, by virtue
of the Representer Theorem [Kimeldorf and Wahba, 1971], the resulting decision
functions can be represented by a finite linear combination of kernels centered
at the training data, and the MCE is no exception. This elegant and convenient
result enables exact inference to be performed while only requiring a finite kernel
gram matrix of the size of the dataset (n× n) to be computed. In this way, the
capacity of the model grows with the size of the dataset, which makes kernel
methods nonparametric and very flexible, as it can adapt to the complexity of a
dataset even with relatively simple kernels.

However, this elegant property is also the very reason that prevents kernel-
based methods from scaling to larger datasets, as the size of such a gram
matrix grows very quickly by O(n2). Many kernel-based methods also require the
inversion of a regularized gram matrix, which has a time complexity of O(n3),
and cannot be easily parallelized like standard matrix multiplications. As such,
inference on datasets beyond tens of thousands of observations quickly becomes
impractical to perform with kernel-based techniques.

In order to scale to big datasets, instead of placing a kernel over the input
space directly and let it implicitly define the feature space, we explicitly define a
finite dimensional feature space Z ⊆ Rp of lower dimension p, where p < n, and
place a linear kernel over it. That is, we specify a family of explicit features maps
ϕθ : X → Z, and place a linear kernel on top of these explicit features,

kθ(x, x
′) = ϕθ(x)Tϕθ(x

′). (71)

By explicitly defining a finite dimensional feature space, the matrix to be
inverted during both learning and inference in the MCE can be reduced from size
n× n to size p× p by using the Woodbury matrix inversion identity [Higham,
2002]. We use this identity to modify algorithm 1 to algorithm 2 to exploit this
computational speed up.

However, with a fixed and finite amount of feature basis, the model becomes
parametric and its flexibility is compromised. In other words, the model is narrow
in the number of feature representations. We therefore turn to multi-layered
feature compositions, where the flexibility of a model comes from the deep
architecture instead of implicit high dimensional features.



Algorithm 2 MCE Hyperparameter Learning with Batch Stochastic Gradient
Updates for Explicit Features
1: Input: feature family ϕθ : X → Z ⊆ Rp, dataset {xi, yi}ni=1, feature parameters θ0,

regularization hyperparameters λ0, learning rate η, batch size nb
2: θ ← θ0, λ← λ0

3: repeat
4: Sample the next batch Ib ⊆ Nn, s.t. |Ib| = nb
5: Y ← {δ(yi, c) : i ∈ Ib, c ∈ Nm} ∈ {0, 1}nb×m
6: Zθ ← {ϕθ(xi) : i ∈ Ib} ∈ Rnb×p

7: Lθ,λ ← cholesky(ZTθ Zθ + nbλIp) ∈ Rp×p

8: Wθ,λ ← LTθ,λ\(Lθ,λ\ZTθ Y ) ∈ Rp×m

9: Pθ,λ ← ZθWθ,λ ∈ Rnb×m

10: r(θ, λ) = α(θ)
√∑m

c=1

∑p
j=1(Wθ,λ)2j,c

11: q(θ, λ)← 1
nb

∑nb
i=1 Lε((Y )i, (Pθ,λ)i) + 4e r(θ, λ)

12: (θ, λ)← GradientBasedUpdate(q, θ, λ; η)
13: until maximum iterations reached
14: Output: kernel hyperparameters θ, regularization hyperparameter λ

C.2 Conditional Embedding Network

For many application domains, there are natural structures in the data. For
example, in image recognition, pixel dimensions are spatially correlated: nearby
pixels are more related, and ordering between the pixel dimensions matter. One
would expect convolutional features [LeCun et al., 1998] to be natural in this
domain, and provide a performance boost to our classifier should it be included.
In this way, we can often benefit by including domain specific structures and
features into our model.

In this section, we focus on constructing kernels for which inputs x, x′ ∈ X
is to undergo various stages of feature transformations before such it is passed
into a simpler kernel κ that captures the similarity between the representations.
Specifically, we pay particular attention to feature transformations in the form of
a perceptron, so that the cumulative stages of feature transformation become the
(feed-forward) multi-layer perceptron that is familiar within the neural network
literature.

Formally, let F0 := X be the original input space. The jth layer of the network
ϕ
(j)
θj

: Fj−1 → Fj , j = 1, 2, . . . , L is to transform features from the previous layer
to features in the current layer, where L is the total number of such feature
transformation layers, and θj ∈ Θj parametrizes each of those transformations.

For example, in a typical multi-layer perceptron context, each layer can be
written as ϕ(j)

θj
(x) = σ(Wjx + bj), where Wj and bj are the weight and bias

parameters of the layer, and σ is an element-wise activation function, typically the
rectified linear unit (ReLU) or the sigmoid. In this case, the layer is parametrized
by θj = {Wj , bj}.



Let κθ0 : Fp × Fp → R be parametrized by θ0 ∈ Θ0. We will construct our
kernel network k by

kθ(x, x
′) := κθ0

(
ϕ
(L)
θL

(
ϕ
(L−1)
θL−1

(
. . . ϕ

(2)
θ2

(
ϕ
(1)
θ1

(x)
)))

,

ϕ
(L)
θL

(
ϕ
(L−1)
θL−1

(
. . . ϕ

(2)
θ2

(
ϕ
(1)
θ1

(x′)
))))

,

(72)

where θ = (θ1, θ2, . . . , θL−1, θL, θ0) ∈ Θ = Θ1 ⊗Θ2 ⊗ · · · ⊗ΘL−1 ⊗ΘL ⊗Θ0 are
the collection of all parameters of each layer and the kernel κ.

In order to train the multi-layered representations in an end-to-end fashion,
we employ algorithm 1. With a deep architecture, the feature representations the
CEN can learn are very flexible, and can work very well for structured data by
employing suitable network architectures.

If we choose to employ nonlinear kernels κ, the model architecture is also
wide in that an even higher dimensional feature space is implicitly defined on top
of the feature space of the last network layer. Despite its supreme flexibility, this
again prevents the model from being scalable. We therefore turn to the specific
case where we employ a linear kernel κ on top of the multi-layered features.

C.3 Explicit Conditional Embedding Network

The explicit CEN is simply a special case at the intersection of the explicit MCE
and the CEN. From the explicit MCE perspective, we simply choose the feature
map ϕθ(x) = ϕ

(L)
θL

(
ϕ
(L−1)
θL−1

(. . . ϕ
(2)
θ2

(ϕ
(1)
θ1

(x)))
)
. From the CEN perspective, we

simply choose κ(z, z′) = zT z′ to be a linear kernel.
This model architecture is a very practical and powerful form of the MCE.

By having a deep architecture, the classifier is still capable of learning flexible
representations on structured data, while being able to scale to larger datasets
due to the linear kernel at the output layer, provided that the dimensionality of
the last layer is relatively small compared to the size of the dataset.

As a subclass of explicit MCE, we can employ algorithm 2 to learn the multi-
layered features effectively. In fact, by not mapping the multi-layered features
into a nonlinear kernel, the gradients for each network weight and bias are usually
more pronounced, and learning is usually faster in comparison. This approach
was used to train the neural network features in our experiments.
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