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RESEARCH SUMMARY
Background: Conditional mean embeddings
(CMEs) are kernel models that nonparamet-
rically encode expectations under conditional
distributions, forming a flexible and powerful
framework for probabilistic inference.

Problem: Their hyperparameters are notori-
ously difficult to tune or learn.

Question: Can we design a scalable hyper-
parameter learning algorithm for CMEs to
ensure good generalization?

Contribution: We show that when CMEs
are used to estimate multiclass probabili-
ties, there are learning-theoretic bounds based
on Rademacher complexities that result in a
complexity-based hyperparameter learning al-
gorithm which 1) balances data fit and model
complexity, 2) amends to batch stochastic gra-
dient updates, and 3) demonstrates capabil-
ity to learn more flexible kernels such as those
constructed from neural networks.

TOY EXAMPLE: NON-SEPARABLE IRIS
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Setup: The data is non-separable by any means – the same x ∈ R2 may be assigned different labels
y ∈ {1, 2, 3}. It is very easy for models to overfit by forcing a pattern or underfit by giving up.

Result: Our learning algorithm can drive the model from any initial state, overfitted (left) or un-
derfitted (right), to a complexity balanced state where generalization accuracy is the highest.

ALGORITHM
1: Input: kernel family kθ : X × X → R, dataset {xi, yi}ni=1, initial

kernel hyperparameters θ0, initial regularization hyperparameter λ0,
learning rate η, cross entropy loss threshold ε, batch size nb

2: θ ← θ0, λ← λ0
3: repeat
4: Sample the next batch Ib ⊆ Nn, |Ib| = nb
5: Y ← {δ(yi, c) : i ∈ Ib, c ∈ Nm} ∈ {0, 1}nb×m

6: Kθ ← {kθ(xi, xj) : i ∈ Ib, j ∈ Ib} ∈ Rnb×nb

7: Lθ,λ ← cholesky(Kθ + nbλInb
) ∈ Rnb×nb

8: Vθ,λ ← LTθ,λ\(Lθ,λ\Y ) ∈ Rnb×m

9: Pθ,λ ← KθVθ,λ ∈ Rnb×m

10: r(θ, λ)← α(θ)
√

trace(V Tθ,λKθVθ,λ)

11: q(θ, λ)← 1
nb

∑nb

i=1 Lε((Y )i, (Pθ,λ)i) + 4e r(θ, λ)

12: (θ, λ)← GradientBasedUpdate(q, θ, λ; η)
13: until maximum iterations reached
14: Output: kernel hyperparameters θ, regularisation hyperparameter λ

METHOD
Idea: Consider the CME in the multiclass setting, referred to as the mul-
ticlass conditional embedding (MCE), whose empirical form is:

p̂(x) = f(x) := YT (Kθ + nλI)−1kθ(x). (1)

Use Rademacher complexity bounds (RCB) to bound its expected risk:
Theorem 4.1 For any n ∈ N+ and observations {xi, yi}ni=1 used to define
fθ,λ (1), with probability 1 − β over iid samples {Xi, Yi}ni=1 of length n from
PXY , every θ ∈ Θ, λ ∈ Λ, and ε ∈ (0, e−1) satisfies E[Le−1(Y, fθ,λ(X))] ≤
1
n

∑n
i=1 Lε(Yi, fθ,λ(Xi))+4e r(θ, λ)+

√
8
n log 2

β , where the RCB is r(θ, λ) :=√
supx∈X kθ(x, x)tr(YT (Kθ + nλI)−1Kθ(Kθ + nλI)−1Y).

Propose an objective based on this bound, and extensions thereof, to en-
sure good generalization by balancing data fit and model complexity:

q(θ, λ) :=
1

n

n∑
i=1

Lε(yi, fθ,λ(xi)) + 4e r(θ, λ). (2)

DEEP MNIST & ARD MNIST
Deep MNIST: Apply our learning algorithm
to an MCE with kernels constructed from deep
convolutional neural networks. Result:

• Highly scalable with flexible representations

• Improved test accuracy: 99.48% v.s. 99.26%

• Faster convergence in network training
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ARD MNIST: Apply our learning algorithm
to perform automatic relevance determination
(ARD) on MNIST pixels. Result:
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UCI EXPERIMENTS
Experimental Setup: Compare our learning algorithm to exisiting hyperparameter tuning algo-
rithms on UCI datasets, as well as to other models as standard benchmarks. GMCE, GMCE-SGD,
and CEN-1/2 are variations to our approach. GMCE and GMCE-SGD use anisotropic Gaussian
kernels with full and batch stochastic gradient update. CEN-1 and CEN-2 employ kernels
constructed from fully connected neural networks with 16-32-8 and 96-32 hidden units.

Result: Our learning algorithm achieves higher test accuracy across a range of datasets compared
to other methods such as empirical risk minimization (ERM), cross validation (CV), and median
heuristic (MED). In terms of the comparison to benchmark models, our algorithm performs on par
with benchmarks using neural networks (a, c), probabilistic binary trees (b), decision trees (d), and
regularized discriminant analysis (e).

Table 1: Test accuracy (%) of multiclass conditional embeddings on UCI datasets against benchmarks
Method banknote ecoli robot segment wine yeast

GMCE 99.9± 0.2 87.5± 4.4 96.7± 0.9 98.4± 0.8 97.2± 3.7 52.5± 2.1
GMCE-SGD 98.8± 0.9 84.5± 5.0 95.5± 0.9 96.1± 1.5 93.3± 6.0 60.3± 4.4
CEN-1 99.5± 1.0 87.5± 3.2 82.3± 7.1 94.6± 1.6 96.1± 5.0 55.8± 5.0
CEN-2 99.4± 0.9 86.3± 6.0 94.5± 0.8 96.7± 1.1 97.2± 5.1 59.6± 4.0
ERM 99.9± 0.2 72.1± 20.5 91.0± 3.7 98.1± 1.1 93.9± 5.2 45.9± 6.4
CV 99.9± 0.2 73.8± 23.8 90.9± 3.4 98.3± 1.3 93.3± 7.4 58.0± 5.8
MED 92.0± 4.3 42.1± 47.7 81.1± 6.2 27.3± 26.4 93.3± 7.8 31.2± 14.1
Benchmarks 99.78a 81.1b 97.59c 96.83d 100e 55.0b


