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Abstract

This thesis presents the narrative of a particular journey towards discovering and de-

veloping Bayesian perspectives on conditional kernel mean embeddings. It is motivated

by the desire and need to learn flexible and richer representations of conditional distri-

butions for probabilistic inference in various contexts. While conditional kernel mean

embeddings are able to achieve such representations, it is unclear how their hyperparame-

ters can be learned for probabilistic inference in various settings. These hyperparameters

govern the space of possible representations, and critically influence the degree of infer-

ence accuracy. At its core, this thesis argues for the notion that Bayesian perspectives

lead to principled ways for formulating frameworks that provides a holistic treatment to

model, learning, and inference.

The story begins by emulating required properties of Bayesian frameworks via learn-

ing theoretic bounds. This is carried through the lens of a probabilistic multiclass set-

ting, resulting in the multiclass conditional embedding framework. Through establishing

convergence to multiclass probabilities and deriving learning theoretic and Rademacher

complexity bounds, the framework arrives at an expected risk bound whose realizations

exhibits desirable properties for hyperparameter learning such as the ever-crucial bal-

ance between data-fit error and model complexity, emulating marginal likelihoods. The

probabilistic nature of this bound enable batch learning for scalability, and the generality

of the model allow for various model architectures to be used and learned end-to-end.

The narrative unfolds into forming approximate Bayesian inference frameworks directly

for the likelihood-free Bayesian inference problem, leading to the kernel embedding

likelihood-free inference framework. The core motivator centers around the natural suit-

ability of conditional kernel mean embeddings to forming surrogate probabilistic models.

By leveraging the likelihood-free Bayesian inference problem structure, surrogate models

for both hyperparameter learning and posterior inference are developed.

Finally, the journey concludes with a Bayesian regression framework that aligns the

learning and inference to both the problem and the model. This begins by a careful

formulation of the conditional mean and the novel deconditional mean problem, thereby

revealing the novel deconditional mean embeddings as core elements of the wider kernel

mean embedding framework. They can further be established as a nonparametric Bayes’

rule with applications towards Bayesian inference. Crucially, by introducing the task

transformed regression problem, they can be extended to the novel task transformed

Gaussian processes as their Bayesian form, whose marginal likelihood can be used to

learn hyperparameters in various forms and contexts.

These perspectives and frameworks developed in this thesis shed light into creative ways

conditional kernel mean embeddings can be learned and applied in existing problem

domains, and further inspire elegant solutions in novel problem settings.
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s Index across posterior super-samples

xj j-th simulation data or summary statistics sample

θj j-th simulation parameter sample

θ̃t t-th prior parameter sample

θ̂s s-th posterior parameter super-sample

k Kernel on data or summary statistics space

` Kernel on parameter space

α Hyperparameters of kernel k

β Hyperparameters of kernel `

Hk Reproducing kernel Hilbert space induced by k

H` Reproducing kernel Hilbert space induced by `

f Generic element in Hk, often also real-valued function on X
g Generic element in H`, often also real-valued function on Y
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λ Regularization hyperparameter

L Simulation parameter gram matrix

` Simulation parameter vector

κε(y) Vector of ε-kernel comparisons of simulations to observation

v(y) Weights of kernel means likelihood evaluated at observation

q(y|θ) Evaluation of kernel means likelihood

q(y) Evaluation of kernel means marginal likelihood

q(θ|y) Evaluation of kernel means posterior

CX|Θ Conditional mean operator of simulator

µX|Θ=θ Conditional mean embedding of simulator

µΘ Mean embedding of prior

µΘ|Y=y Conditional mean embedding of posterior

ĈX|Θ Empirical conditional mean operator of simulator

µ̂X|Θ=θ Empirical conditional mean embedding of simulator

µ̃Θ Empirical mean embedding of prior

µ̄Θ|Y=y Kernel mean posterior embedding
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X Input space of latent function or deconditional mean

Y Input space of response function or conditional mean

Z Target space, often the set of real numbers

X Random variable with values realized in the input space X
Y Random variable with values realized in the input space Y
Z Random variable with values realized in the output space Z
x Generic instance in X
y Generic instance in Y
z Generic instance in Z
k Kernel on input space X
` Kernel on input space Y
Hk Reproducing kernel Hilbert space induced by k

H` Reproducing kernel Hilbert space induced by `

φ Canonical feature function in Hk

ψ Canonical feature function in H`

f Generic element in Hk, often also real-valued function on X
g Generic element in H`, often also real-valued function on Y
pY Prior density

pX|Y Likelihood density, function of realization and condition

pX|Y=y Likelihood density, function of realization with fixed condition

pX=x|Y Likelihood density, function of condition with fixed realization

CY Y Prior mean operator

CX|Y Conditional mean operator
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n Number of transformation samples

i Index over transformation samples
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j Index over task samples

xi Transformation sample in input space X
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x Collection of transformation samples in input space X
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Ψ Collection of feature vectors of transformation inputs y

Ψ̃ Collection of feature vectors of task inputs ỹ

K Gram matrix of transformation inputs x

L Gran matrix of transformation inputs y

L̃ Gram matrix of task inputs ỹ

A Task transformation matrix

k Kernel vector function for inputs in X
` Kernel vector function for inputs in Y
C̃Y Y Empirical prior mean operator

ĈX|Y Empirical conditional mean operator

C̄ ′X|Y Empirical deconditional mean operator

µ̂X|Y=y Empirical conditional mean embedding

µ̄′X=x|Y Empirical deconditional mean embedding

λ Regularization hyperparameter for prior mean operator

ε Regularization hyperparameter for evidence mean operator

σ Noise standard deviation

M Transformation matrix for transformed regression

Σ Noise covariance for transformed regression

ᾱ Weights on kernels in nonparametric view

w̄ Weights on features in parametric view

N Gaussian density

u Inducing points



Chapter 1

Introduction

1.1 Motivations

Modern machine learning algorithms are often probabilistic in nature, relying on

statistical models for reasoning. In many practical scenarios, the probability dis-

tributions involved can be nontrivial and complex. This applies not only for dis-

tributions that are used to model stochasticity inherent in real world systems,

but also for those that are used to express uncertainty due to limited knowledge.

Consequently, they benefit from high complexity models that allow for rich repre-

sentations of the probability distributions involved.

In particular, relationships between variables of interests are often expressed as

conditional distributions. Due to the vastly intricate and complex ways variables

can interact in the real world, practical frameworks must be careful to not over-

simplify representations that describe the relevant conditional distributions.

Conditional kernel mean embeddings, also referred as conditional kernel means or

conditional mean embeddings (CMEs), are kernel models that encode conditional

distributions. More precisely, they encode conditional mean operations, mean-

ing that it can be used to compute expectations of functions under the encoded

conditional distribution. They are part of the kernel mean embedding (KME)

framework, which in general encodes distributions as mean operations via kernels.

As many types of inference problems can be expressed as expectations of functions

under distributions, this makes KMEs widely applicable to a variety of settings.

These embeddings live in the reproducing kernel Hilbert space (RKHS), and funda-

mental probability rules are translated into mean operations in this space. While

first class citizens of probabilistic rules are density evaluations, first class citizens of

RKHS rules are expectations. This makes KMEs extremely attractive in practical

scenarios where only samples from distributions of interest are available, such as

1
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observed datasets or simulated examples. Given a finite amount of samples, den-

sity estimation is a fundamentally harder problem than estimating expectations,

with the latter often amounting to simply taking empirical means. A primary rea-

son is due to the curse of dimensionality affecting the former more than the latter.

For instance, when the dimensionality of the problem increases by one, density

estimation needs to be re-performed to spread the probability mass across the

new dimension. If the number of samples stays constant, samples tend to appear

more distant and less space-filling compared to before. Consequently, in general

the number of samples required to achieve the same level of estimation quality

increases exponentially with dimensionality. On the other hand, estimating ex-

pectations often amount to simply including the new dimension when computing

the empirical means.

Mean embeddings operate with a philosophy similar to the kernel trick. The kernel

trick makes use of the observation that certain learning algorithms only require

dot products of features. Consequently, the trick involves computing those dot

products via kernels directly, instead of inefficiently computing high dimensional

features first before eventually computing dot products anyway. In a similar fash-

ion, since solutions to many inference problems require quantities that can be

expressed as expectations of functions, mean embeddings encode the necessary in-

formation required to compute expectations of functions directly, instead of com-

puting high dimensional integrals with respect to a distribution. Crucially, when

characteristic kernels are used, each distribution has a unique mean embedding.

Informally, this means that the ability to represent and compute expectations of

functions under the distribution is as useful as knowing the distribution itself.

Perhaps the most attractive aspect of the KME framework is that fundamental

RKHS operations that correspond to fundamental probabilistic rules are linear.

Combined with the fact that mean operations preserve linearity, the resulting em-

pirical forms can be expressed entirely in terms of linear algebraic operations. In

general, this means that the resulting algorithms become delightfully straightfor-

ward to implement.

The above considerations make KMEs and CMEs especially attractive for allevi-

ating intractable integrals under complex distributions that are usually required in

many probabilistic inference tasks. Consequently, CMEs permit the use of flexible

and complex conditional distributions by representing them in the RKHS, while

providing a principled framework to perform inference using those representations.

Nevertheless, there remain intricate problems that prevent the wide adoption of

CMEs in the machine learning community, despite their apparent aforementioned

advantages. This thesis is focused on formulating and developing solutions to these

intricate problems. We do this by providing new perspectives and frameworks

around CMEs using Bayesian principles.
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1.2 Challenges

Despite the powerful representations of probability distributions it provides, CMEs

face a number of challenges that prevent their ultimate potential to be fully lever-

aged. There remain several theoretical and practical challenges to overcome that

currently barricade their applicability to a wide variety of problem settings. In

particular, in this thesis we focus on the following challenges:

• Hyperparameter Learning: How can we learn hyperparameters for CMEs

with respect to the problem setting?

• Probabilistic Inference: How can we infer relevant probability distribu-

tions from CMEs in a given problem setting?

• Bayesian Computation: Are there alternative RKHS operators that en-

code Bayes’ rule? How are they related to established operators and models?

• Uncertainty Quantification: How can we use CMEs to quantify uncer-

tainties for latent phenomena or models based on CMEs themselves?

• Interpretability: Can we establish connections or design techniques that

help to interpret empirical artifacts of CME estimation?

• Scalability: How can we scale or find alternative ways to apply algorithms

that address the above challenges to large datasets?

These challenges motivate the core theme and contributions of this thesis. The

frameworks developed in all chapters focuses on addressing hyperparameter learn-

ing and probabilistic inference by leveraging Bayesian principles to various degrees,

which consequently provides methods to tackle the remaining challenges. Chap-

ter 3 addresses hyperparameter learning, probabilistic inference, and scalability.

Chapter 4 addresses hyperparameter learning, probabilistic inference, uncertainty

quantification, and interpretability. Chapter 5 addresses hyperparameter learning,

probabilistic inference, Bayesian computation, uncertainty quantification, inter-

pretability, and scalability.

1.2.1 Hyperparameter Learning

Perhaps the most important ingredient required for successful adoption and ap-

plication of CMEs is an appropriate hyperparameter learning algorithm that is

suitable for the probabilistic inference task involved. The hyperparameters gov-

ern the RKHS for which the feature representations lie within. Consequently, by
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developing a principled hyperparameter learning framework, we can learn these

appropriate representations for the inference task automatically. We therefore

also refer to this process as automatic representation learning.

Solutions to kernel methods are often highly dependent on the hyperparameters

chosen. They begin by positing a family of kernels, whose parameters become part

of their model hyperparameters, which may further include other hyperparameters

such as noise or regularization hyperparameters. Given a set of hyperparame-

ters, training is often performed by solving a convex or quadratic optimization

problem, such as in the case for support vector machines (SVMs) [Schölkopf and

Smola, 2002]. In other kernel models, the quadratic programming problem can

be solved analytically and expressed as solutions to a set of linear equations, such

as in the case for Gaussian process regressors (GPRs) [Rasmussen and Williams,

2006], regularized least squares classifiers (RLSCs) [Rifkin et al., 2003], and most

importantly CMEs. Consequently, hyperparameters govern their solution space.

Unfortunately, hyperparameter tuning is not straight forward. Often, cross valida-

tion [Song et al., 2013] or median length heuristics [Muandet et al., 2017] remain

as standard solutions. However, they are generic approaches that do not refer to

the probabilistic inference task directly. For instance, cross validation often uses

square losses in the RKHS such as (2.52), which may not necessarily be directly

relevant to the task. Furthermore, cross validation can be computationally expen-

sive and sensitive to the selection and number of validation sets. On the other

hand, median length heuristics only applies to hyperparameters with a length scale

interpretation, so it cannot be used to learn other hyperparameters such as regular-

ization hyperparameters. It also does not make use of the conditional relationship

between the two variables, but rather just their respective marginal distributions.

Overall, median length heuristics do not make use of important information that

CMEs have access to for hyperparameter selection.

One notable success story in this domain are Gaussian process regressors (GPRs)

[Rasmussen and Williams, 2006], which employ their marginal likelihood as an

objective for hyperparameter learning. The marginal likelihood arises from its

Bayesian formulation, and exhibits certain desirable properties – in particular, the

ability to automatically balance between data fit and model complexity. On the

other hand, CMEs are not necessarily Bayesian, and hence they do not benefit

from a natural marginal likelihood formulation, yet such a balance is critical when

generalizing the model beyond known examples. A core contribution of this thesis

is to develop or approximate Bayesian learning strategies for CMEs in order to

achieve this simple yet elegant method for hyperparameter learning.

Motivated by the log marginal likelihood objective for hyperparameter learning

of GPRs, Flaxman et al. [2016] developed a log marginal likelihood objective

for marginal mean embeddings. This is done by placing a GP prior on the true
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mean embedding itself, and constructing a Gaussian likelihood from the true mean

embedding to the empirical mean embedding. Similar to the GPR, with a GP prior

and a Gaussian likelihood, inference becomes tractable and a closed form solution

to the log marginal likelihood can be obtained up to a slight change of variable

factor. Nevertheless, it is not obvious how this can be extended to CMEs.

Furthermore, hyperparameter learning for CMEs can be comparatively more chal-

lenging than marginal mean embeddings. Firstly, there are two distinct kernels

on two spaces which play different roles, one for the “output” and one for the

“input”, as opposed to one overall kernel for marginal mean embeddings. Ef-

fects of changing hyperparameters for these two kernels can interact and affect

the CME in complex ways. Secondly, empirical CMEs have a regularization hy-

perparameter. While the regularization hyperparameter is introduced to prevent

overfitting [Song et al., 2009], as we can see from (2.49) it serves to prevent over-

fitting specifically with respect to the square loss in the RKHS by shrinking the

Hilbert-Schmidt (HS) norm of the conditional mean operators (CMOs). This is

not necessarily the shrinkage or regularization that is relevant depending on the

problem setting. Consequently, it may not be obvious how to interpret it or con-

struct objectives to learn it appropriately. Furthermore, empirically it serves to

stabilize the inversion of gram matrices, which are often only positive semidefi-

nite without the regularization hyperparameter. As a result, the inversion may

explode as the regularization hyperparameter decreases such that the matrix to be

inverted approaches singularity. This is another practical concern when learning

the regularization hyperparameter via optimization techniques.

In this thesis, we derive and develop algorithms to learn hyperparameters for CMEs

in three different contexts. Chapter 3 presents a learning theoretic approach to

motivate and construct a complexity balanced learning objective that emulate a

marginal likelihood in the probabilistic multiclass classification context, chapter 4

approximates a marginal likelihood surrogate for likelihood-free inference (LFI),

and chapter 5 formulates a marginal likelihood by establishing a Bayesian regres-

sion view.

1.2.2 Probabilistic Inference

Inferring probability distributions using KMEs can be a challenging task. In par-

ticular, this often involved the recovery of encoded distributions from their mean

embeddings, which is generally an unsolved problem. A core aspect of the KME

framework is to map distributions PX to its mean embedding µX and perform

inference solely in the RKHS via RKHS machinery and operations. While the

mapping from distributions to their mean embeddings is a simple kernel mean

and is injective for characteristic kernels, the reverse mapping do not have a read-

ily known solution. That is, it is not easy to recover the distribution PX that
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was embedded as a mean embedding µX once it is embedded, even though this

mapping is one-to-one.

This is known as the pre-image problem, where the challenge is to find what

the distribution looked like (hence, image) before it was embedded as a mean

embedding (hence, pre).

Before discussing the pre-image problem further, it is worthwhile to point out that

a core part of the spirit of KMEs is to circumvent the need and requirement of ex-

plicitly working with distributions in the usual probability space, such as densities.

For instance, density estimation is much more prone to the curse of dimension-

ality than kernel mean estimation, since their convergence rates do not directly

involve the dimensionality of the samples as per theorem 2.7 and theorem 2.9,

since samples have been mapped into an infinite dimensional RKHS. As such, it

is seemingly counterproductive to seek pre-images from mean embeddings, since

if explicit probability distributions are required, then frameworks other than the

KME could be more suitable.

However, there exists scenarios where one would be nevertheless interested in the

pre-image of certain mean embeddings.

The first scenario is when marginal likelihoods is to be recovered for hyperparam-

eter learning. In section 1.2.1 we alluded to the idea that hyperparameter learning

of CMEs can potentially be achieved via formulating or emulating a marginal

likelihood objective. However, marginalization integrals involved for the marginal

likelihood is often hard to compute in the usual probability space. Yet, since

marginalization integrals are expectations, and KMEs encode expectations, it is

natural to consider using the KMEs framework to sidestep the difficult integral

and instead obtain the mean embedding of the marginal likelihood. Nevertheless,

suppose we are somehow able to derive the mean embedding of the marginal like-

lihood, we still need to recover the encoded marginal likelihood so that we can

optimize it with respect to the hyperparameters. In this thesis, chapter 4 presents

solutions to approximate marginal likelihoods from mean embeddings, and chap-

ter 5 formulates marginal likelihoods of the mean embeddings themselves.

The second scenario is when interpretable inference results are required. For in-

stance, in classification settings decision boundaries are often determined by de-

cision probabilities, and in Bayesian inference settings the posterior itself is of

interest to quantify uncertainty. Therefore, after the mean embeddings of these

distributions are obtained, it is of ultimate interest to convert them back to dis-

tributions, either in the form of probabilities, densities, or samples, so that these

results can be interpreted for use in their respective problem setting. In this thesis,

chapter 3 addresses the classification setting, and chapter 4 addresses the Bayesian

inference setting.
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In general, techniques to recover distributions from mean embeddings would en-

able a synergistic framework where RKHS operations with mean embeddings and

probabilistic operations with distributions can be used in conjunction to take ad-

vantages from both worlds. Ideally, when inference requires intractable integrals

which are too difficult in the usual probability space, we can embed distributions

into the RKHS as mean embeddings, perform the equivalent RKHS operations,

and recover the distribution the resulting RKHS object encodes. Unfortunately,

this recovery of distributions from mean embeddings do not have a closed form

solution.

Furthermore, it is also possible that the pre-image may not even exist. While the

mapping from distributions to mean embeddings is injective, it is not necessarily

guaranteed to be surjective. This means that if one collects all the mean em-

beddings obtained from embedding all possible distributions, it still may not fill

up the whole RKHS. While this is not a problem for true mean embeddings, as

they have a pre-image by construction, it can become a problem once the mean

embedding undergo RKHS operations, effectively bringing the mean embedding

to another point in the RKHS, which may not correspond to any distribution.

As an intuitive illustration, consider the analogy where probability distributions

are akin to human individuals and their mean embeddings are akin to their gene.

All human individuals have unique gene profiles. However, not all genes belong to

humans, since some may belong to dogs, cats, or other species. That is, the space

of all possible genes is in some sense bigger than the space of all possible humans.

This problem is even more pronounced for empirical CMEs. Suppose a kernel was

chosen such that true CMEs always evaluate to nonnegative values. The empirical

CME may evaluate to negative values even if its true CME never evaluates to

negative values, due to the presence of a matrix inversion. This means that there

are no distributions in the space of distributions considered that would map to

such an empirical CMEs.

Current approaches to solve the pre-image problem usually begin by assuming a

particular form to the density of the pre-image. For instance, one can approx-

imate the pre-image with a mixture of Gaussians [McCalman et al., 2013] or a

mixture smoothing kernels [Kanagawa and Fukumizu, 2014] which are also of-

ten Gaussians. Nevertheless, recovering distributions from mean embeddings for

probabilistic inference remain a challenging problem in many problem settings.

In this thesis, we recover distributions from CMEs for probabilistic inference in

three different contexts. Chapter 3 recovers class decision probability estimates for

probabilistic multiclass classification, chapter 4 approximates surrogate densities

of likelihoods and posteriors for LFI, and chapter 5 reveals posterior predictive

processes by establishing a Bayesian regression view.



Introduction 8

1.2.3 Bayesian Computation

Bayesian inference often requires computation of the posterior PY |X when given

the likelihood PX|Y and the prior PY . When density evaluations exist, the Bayes’

rule provides their relationship as pY |X(·|x) =
pX|Y (x|·)pY (·)∫

Y pX|Y (x|y)pY (y)dy
. We refer to this

computation as Bayesian computation.

Importantly, Bayesian inference and Bayesian computation are separate concepts.

Bayesian inference is focused on inferring distributions on latent or unknown vari-

ables of interest, thereby capturing a sense of uncertainty in our knowledge of

these variables. It often requires Bayesian computation using the Bayes’ rule to

obtain a posterior distribution of the latent or unknown variables given the ob-

served variables. Bayesian inference is a philosophy of approach. On the other

hand, Bayesian computation refers to the process of obtaining representations of

PY |X from representations of PX|Y and PY , regardless of their meaning. If these

representations are densities or probabilities, then Bayes’ rule can be applied. The

Bayes’ rule is simply a mathematical statement that is true regardless of the nature

of the random variables. Note that these representations of distributions do not

have to be densities. For example, since mean embeddings are unique representa-

tions of distributions, should there be a rule that specifies the mean embedding of

PY |X as a function of the mean embeddings of PX|Y and PY , then such a rule can

be used for Bayesian computation.

In this section, we discuss the application of KMEs towards Bayesian computation,

and defer the discussion of Bayesian inference specifically to the next section.

In Bayesian computation using the usual Bayes’ rule, several levels of intractabil-

ity may arise. The first is when both likelihood and prior density evaluations

are tractable but the evidence integral
∫
Y pX|Y (x|y)pY (y)dy is intractable, lead-

ing to literatures such as variational inference (VI) [Blei et al., 2017] and Markov

chain Monte Carlo (MCMC) [Hastings, 1970]. The next is when only likelihood

evaluations are intractable but sampling is possible, leading to literatures such

as likelihood-free inference (LFI) and approximate Bayesian computation (ABC)

[Marin et al., 2012]. More rarely, only prior evaluations are intractable but avail-

able via sampling, leading to literatures in implicit priors. The last is when both

the likelihood and prior evaluations are intractable but available via sampling,

leading to newer literatures such as implicit generative models.

While there are many approaches that addresses posterior approximations in each

of these scenarios, the underlying limitation that is shared across all these settings

is that Bayes’ rule requires density evaluations that are difficult to approximate in

high dimensions from samples. Instead, if relationships between the posterior, like-

lihood, and prior can be captured without using density evaluations, but directly

by using mean embeddings, this issue could be more naturally sidestepped.
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The KME framework can be used to encode probability rules in the RKHS. Canon-

ical examples include the kernel sum rule, kernel chain rule, and kernel Bayes’ rule

(KBR), which encodes the sum rule, chain rule, and Bayes’ rule respectively [Fuku-

mizu et al., 2013, Muandet et al., 2017, Song et al., 2013]. We will collectively

refer to them as kernel distribution rules.

Kernel distribution rules provide an elegant set of machinery for performing proba-

bilistic inference without operating directly in the usual probability space, such as

using densities. They relate mean embeddings via linear operations in the RKHS,

instead of density evaluations via products and integrals. In particular, the KBR

is powerful in that it circumvents intractabilities such as marginalization integrals

that may occur in the computation of the posterior in the usual Bayes’ rule. The

usual Bayes’ rule takes a likelihood density and a prior density, and outputs a pos-

terior density. Analogously, the KBR takes a CMO encoding the likelihood and

a marginal mean embedding encoding the prior, and outputs a CMOs encoding

the posterior [Fukumizu et al., 2013]. Since its empirical form only requires sam-

ples from the distributions instead of a parametrized density, and its complexity

increases with the number of samples, we refer to this type of encoding of Bayes’

rule as a nonparametric Bayes’ rule.

Importantly, because a distribution can be encoded as mean embeddings of multi-

ple orders, there are different versions for these kernel distribution rules depending

on the order of the tensors used to encode particular distributions. In particular,

for KBR, there are two versions, which uses different ordered tensors for the like-

lihood and prior. Crucially, on top of this, they further use two different ordered

tensors for the likelihood and prior within each version. This can cause unnat-

ural consequences in the nonparametric version of the empirical KBRs, such as

having the effect of the prior mean embedding vanish as hyperparameters change.

Since the same probability rule can be encoded at multiple orders in the RKHS,

it remains an open question whether there are more natural alternatives for a

nonparametric Bayes’ rule, and what assumptions or consequences they bring.

In this thesis, chapter 5 establishes the proposed operator as a nonparametric

Bayes’ rule, and discusses its connections to KBR.

1.2.4 Uncertainty Quantification

Uncertainty quantification is a core aspect of Bayesian inference. There are two

settings in which uncertainty quantification is important to CMEs.

The first is when CMEs are used in approximate Bayesian inference problems.

This setting is concerned with approximating the posterior of a given inference

problem, such as the inference of parameters of a simulator model, which in turn
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provides a sense of uncertainty for the inference of such quantities. The second is

when uncertainty needs to be quantified on the CMEs themselves. This involves

establishing the task for which CMEs solve and quantifying the uncertainty on the

solution the CMEs provides. Importantly, this requires treating such a solution as

a latent function or object, and performing Bayesian inference on it.

The two settings are distinct. In the second setting, the Bayes’ rule acts between

observations and latents involved in the CME itself. In contrast, in the first setting

the Bayes’ rule acts between the observations and latents involved in the given in-

ference problem, where the CME serves to encode the distributions involved. In

essence, in the first setting the CME seen as a tool to perform Bayesian compu-

tation for Bayesian inference on another problem setting, whereas in the second

setting the CME is the object of interest that inference is performed on.

In this thesis, chapters 4 and 5 address the first and second settings respectively.

1.2.5 Scalability

Computational efficiency and scalability is always a pressing practical concern

that determines the usability of the framework. Many kernel methods like CMEs

require the inversion of a regularized gram matrix of size n × n, where n is the

number of data points. Consequently, the computational complexity is dominated

byO(n3) in time andO(n2) in space. This means that kernel approaches like CMEs

can become prohibitively expensive, especially compared to linear approaches in

the feature space, which often have linear time complexity of O(n).

In this thesis, chapter 3 addresses scalability by requiring only stochastic or batch

updates, while chapter 5 addresses scalability via theoretical connections to GPs.

1.2.6 Interpretability

A common theme throughout the discussion above is the difficulty in interpreting

aspects of the KME framework. Mean embeddings do not have the same level of

interpretability as usual probability distribution, which can be interpreted directly

with notions of frequency or uncertainty. Furthermore, empirical estimations of

CMEs often introduce artifacts that can impact interpretability such as regular-

ization hyperparameters for operator inversions or non-positive mean embeddings

despite the use of positive kernels.

In this thesis, chapter 4 addresses the interpretability of negatively valued CMEs

through surrogate densities and sampling strategies for recovering the desired dis-

tribution, while chapter 5 addresses the interpretability of the regularization hy-

perparameters via establishing alternative regression views to CMEs.
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1.3 Contributions

By exploring the theme of adopting Bayesian principles to overcome challenges

that barricade the applicability of CMEs, the core contributions of this thesis

involve holistic hyperparameter learning and probabilistic inference frameworks for

three general problem settings – classification (chapter 3), inference (chapter 4),

and regression (chapter 5).

Chapter 3 presents the multiclass conditional embedding (MCE) framework. Con-

trary to most classification frameworks whose formulation begins as a binary classi-

fication problem that is later extended to a multiclass form, the MCE is formulated

naturally as a probabilistic and multiclass classifier, by leveraging the generality of

CMEs (section 3.3). It further provides a multiclass information entropy measure

for quantifying the uncertainty in its predictions (section 3.4).

Importantly, the hyperparameter learning framework for MCEs are based on learn-

ing theoretic bounds, which reveal the Rademacher complexity bound (RCB) as

a data-dependent complexity measure for multiclass settings (section 3.5). To-

gether with a modified cross entropy loss, these learning theoretic bounds express

generalization risk and can be used to derive risk bounds as a function of hy-

perparameters, leading to learning objectives for balancing data fit error against

model complexity. Due to the generality and applicability of these bounds, by

realizing the bound using a subset of the data, we establish a scalable stochastic

batch gradient-based hyperparameter learning algorithm through stochastic batch

realizations of the learning theoretic bound (section 3.6).

In order to establish MCEs as approximations to probabilistic classifiers, we also

provide convergence guarantees (section 3.7). With the model output being ap-

proximate probabilistic predictions, we open up the realm of learning the MCEs

under the cross entropy loss. Critically, to arrive at the learning theoretic bounds

that would help prevent overfitting, bounds that are statements regarding a func-

tion class must be translated to statements regarding a particular function with

particular hyperparameters (section 3.8).

With its roots in CMEs, MCEs can benefit from using various different model

architectures as to form features and thus kernels. One notable and widely useful

instance is the conditional embedding network (CEN) and its variants, providing

a general family of MCEs formed from deep neural network architectures that

can be trained end-to-end under the scalable hyperparameter learning algorithm

(section 3.9).

Chapter 4 presents the kernel embedding likelihood-free inference (KELFI) frame-

work. Current likelihood-free inference (LFI) methods do not directly address the

calibration or learning of hyperparameters for the specific method, including the
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hyperparameter ε that governs the trade-off between computational requirement

and inference accuracy. In contrast, the KELFI framework performs automatic

likelihood-free Bayesian inference, where the hyperparameter learning algorithm

directly addresses the inference task (section 4.3).

The KELFI framework can be understood via three parts - model, learning, and

inference. It begins with the kernel means likelihood (KML) as a consistent like-

lihood surrogate model that modularizes approximate likelihood evaluations from

simulation calls (section 4.3.2). The marginal kernel means likelihood (MKML)

then acts as a Bayesian learning objective for hyperparameters that improves in-

ference accuracy through optimal surrogate representations (section 4.3.3). The

kernel means posterior (KMP) then approximates the true posterior as a poste-

rior surrogate density for approximate Bayesian inference on simulator parameters,

which is then embedded back into the corresponding Hilbert space as kernel means

posterior embedding (KMPE) so that performing super-sampling would in a set of

fast-converging posterior samples of simulator parameters (section 4.3.4). Finally,

we provide proofs of convergence guarantees for kernel embedding likelihood-free

inference (KELFI) (section 4.4).

The KELFI framework is further extended by the formulation of the spatio-

temporal kernel means likelihood (ST-KML) and independent and identically dis-

tributed kernel means likelihood (iid-KML) as classes of KML that are suitable

for spatio-temporal data and iid data respectively, alleviating requirements of de-

signing summary statistics (sections 4.5 and 4.6). We also discuss a trick for

translating a LFI problem into one that involves a Gaussian prior, which enables

KELFI to use closed-formed solutions (section 4.7).

Chapter 5 presents the deconditional mean embedding (DME) and task trans-

formed Gaussian process (TTGP) framework. We first begin by emphasizing

CMEs directly as solutions to the conditional mean problem (section 5.3; proofs

in section 5.11). Starting from the lens of recovering functions from their condi-

tional means to complement CMEs in the KME framework, this work introduces

and formulates DMEs as a new fundamental member of the KME framework via

parallel formalization of the deconditional mean problem against the conditional

mean problem (section 5.4; proofs in section 5.12). We then move onto a regression

view of DMEs by establishing them as solutions to chained losses by introducing

the task transformed regression task, and present both the parametric and non-

parametric forms of the DME solution. We then introduce and formalize TTGPs,

and establish them as Bayesian regression views of the DME (section 5.5; proofs

in section 5.13). This reveals a marginal likelihood for learning hyperparameters

of DMEs and CMEs as a sub-case.

By considering the distributions encoded by DMEs, we establish that DMEs can

be seen as a nonparametric Bayes’ rule, encoding Bayes’ rule through samples
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without prescribing to any particular parametric form (section 5.6; proofs in sec-

tion 5.14). In particular, DMEs possess a natural second order form that makes

it distinct to kernel Bayes’ rule (KBR) which uses third order tensors that lead

to unstable empirical estimates (section 5.7). In various ways, DMEs complete

the framework of KMEs and have interesting relationships with techniques in the

literature (section 5.8).

Importantly, as a consequence of establishing a marginal likelihood of TTGPs for

the task transformed regression problem, they can also be used for sparse repre-

sentation learning via establishing the learning of inducing points as a sub-case of

this problem (section 5.9). On the other hand, as a consequence of establishing

DMEs as a nonparametric Bayes’ rule, DMEs can be used for likelihood-free in-

ference (LFI), opening up another avenue for kernel-based technique in this area

(section 5.9; proofs in section 5.15).

The rest of this thesis is structured as follows. Chapter 2 begins with an introduc-

tion to the framework of kernel mean embeddings (KMEs) with a specific focus

on conditional mean embeddings (CMEs). Chapters 3 to 5 presents our main

contributions above, and chapter 6 concludes the thesis with a summary of the

contributions, the overall theme, and a forward discussion on future work.



Chapter 2

Background

The framework of kernel mean embeddings (KMEs) is concerned with representa-

tions and transformations of highly flexible and general probability distributions

in the context of performing probabilistic inference with these distributions. It

represents distributions in reproducing kernel Hilbert spaces (RKHSs) as mean

embeddings, where complex operations required for probabilistic inference become

linear in the RKHS. The central object from which the RKHS is founded upon

is the kernel, a symmetric function that measures the similarity between any two

objects. Empirical forms of these representations and operators are able to take

full advantage of kernel machinery, leading to a general nonparametric framework

for representing and transforming distributions directly with data. Consequently,

KMEs enable nonparametric expressions of probability distributions that alleviate

common intractability or inflexibility issues encountered in probabilistic inference.

In this section we review KMEs in a general fashion and introduce the necessary

background required for the core chapters of this thesis. In particular, we present

this review in a bottom-up fashion. We first introduce probability theory and

RKHSs in section 2.1 and section 2.2 separately. These form the foundations for

an introduction to mean embeddings and conditional mean embeddings (CMEs)

in section 2.3 and section 2.4 respectively. We then present their empirical and

nonparametric forms in section 2.5 and section 2.6 respectively.

Part of the contributions of this thesis involves either formulating KMEs in a

different or non-standard setting, or reformulating the framework from a different

perspective. Consequently, we will also briefly review CMEs again in a manner

that is more directly relevant for each core chapter, in order to introduce the setup

or formulation for that particular chapter.

14
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2.1 Probability Theory

Probability is at the heart of learning and inference. We begin with a minimal

review of probability theory with special attention to notation and shorthand.

Probability Space. We first introduce a probability space, which is a specific

type of a measure space. In the following paragraph, we use terminologies from

probability theory, and include the corresponding terminologies from measure the-

ory in brackets for reference.

Let the tuple (Ω,W ,P) be a probability space (measure space), where Ω is the

sample space (set),W is a σ-field (σ-algebra) of subsets of Ω, and P :W → [0, 1] a

probability measure (measure). An element W inW is called an event (measurable

set), which are by definition subsets of Ω. An element ω in Ω is called a sample

point (point).

In other words, the probability measure P assigns a probability between 0 and 1,

inclusive, for a given event W , where events are elements of the σ-field W ∈ W or

equivalently are subsets of the samples space W ⊆ Ω.

Random Variables. A random variable X is formally a map from the sample

space Ω to some Borel measurable domain X of interest.

Definition 2.1 (Random Variable). A measurable function X : Ω→ X for some

domain X is called a random variable.

When X is a space of scalars, we call X a scalar-valued random variable. When

X is a space of vectors, we call X a vector-valued random variable, or sometimes

a random vector, with d dimensions. We will formally define scalars and vectors

in the next section. When we develop frameworks for a general X , we will usually

denote the random variable as X, where it is left general for either or other cases.

When the vectorial nature of vector-valued random variable is to be emphasized,

we denote the random variable in bold as X. While random variables are formally

a mapping, they are so named to emphasize their interpretation as a variable that

can be instantiated to different value(s) under different events. An instantiation

of a random variable is denoted with a corresponding lower case letter x or x.

Distributions. A distribution describes the probability for which the random

variable will take on values from a particular subset of the domain.

Definition 2.2 (Distribution). Let (Ω,W ,P) be a probability space. The distri-

bution of a random variable X : Ω → X is the Borel measure PX : A → [0, 1]

defined by

PX [A] := P[X ∈ A], (2.1)
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where A is a σ-field of subsets on X and A ⊆ X is a subset of the domain. The

event {X ∈ A} is a shorthand notation for the inverse image, also referred as the

pre-image, of A ⊆ X under the random variable X,

{X ∈ A} := X−1[A] := {ω ∈ Ω : X(ω) ∈ A} ∈ W . (2.2)

The distribution is also a probability measure itself, as it satisfies the defining

properties of a probability measure, such that the tuple (X ,A,PX) is also a prob-

ability space. It differs from P in the sense that it operates in a different domain.

Instead of operating directly on the events, it operates on the values the random

variable takes for those events.

Cumulative Distribution Function. For real-valued random variables, we can

consider probability measures on the real line.

Definition 2.3 (Cumulative Distribution Function). The cumulative distribution

function (CDF) PX : R → [0, 1] of a real-valued random variable X : Ω → R and

random vector X : Ω→ Rd is defined as

PX(x) := PX [(−∞, x]] = P[X ≤ x],

PX(x) := PX[(−∞,x]] = P[X ≤ x].
(2.3)

For conciseness, we define the following shorthand,

{X ≤ x} := {X ∈ (−∞, x]},

{X ≤ x} :=
d⋂
j=1

{Xj ∈ (−∞, xj]} ∈ W ,

(−∞,x] := (−∞, x1]× · · · × (−∞, xd].

(2.4)

Probability Density Function. For domains X where a Lebesgue measure is

defined, we can further consider densities of probability measures. Intuitively, the

Lebesgue measure provides a sense of volume for the domain, and probability mea-

sures attempt to measure the portion of mass distributed within a given volume

in that domain, giving rise to a notion of density throughout the domain.

Theorem 2.1 (Radon-Nikodym). If the distribution PX is absolutely continuous

with respect to some measure ν on X = Rd, then the Radon-Nikodym theorem

implies the existence of a density for PX with respect to ν. We call this the distri-

bution density of X with respect to ν, or more commonly known as the probability

density function (PDF), denoted by pX : X → [0,∞). The PDF is the function

that satisfies

P[X ∈ A] =

∫
A

pXdν ∀A ⊆ X . (2.5)
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If the distribution ν is a Lebesgue measure νd on some Euclidean space Rd, then

the PDF pX : Rd → [0,∞) is the function that satisfies the familiar form

P[X ∈ A] =

∫
A

pXdνd ≡
∫
A

pX(x)dx ∀A ⊆ Rd. (2.6)

Importantly, CDF PX and PDF pX are functions of x ∈ X and their evaluations

are denoted as PX(x) and pX(x) respectively. It is common practice that when it

is clear from context what random variable we are referring to, such as when the

point of evaluation x is the lower case letter of the random variable X, we can

drop the subscript and denote them as P (x) and p(x) respectively.

Function Expectations. For a random variable X : Ω → X and a function

f : X → R. The notation in probability theory and statistics for the expectation

of a function of a random variable would be E[f(X)], as if X is a variable and

not a function, while in measure theory the more precise notation is E[f ◦X], as

E is a functional of functions on the event space. In practice, E[f(X)] becomes a

shorthand for E[f ◦X], and thus the former is used more often.

Definition 2.4 (Function Expectation). Let f : X → R be some arbitrary real-

valued function over the domain X , then the function expectation is defined as

E[f(X)] :=

∫
X
fdPX =

∫
Ω

(f ◦X)dP =: E[f ◦X]. (2.7)

Since random variables X : Ω → X are functions of events , we have that the

composition (f ◦X) : Ω→ R assigns a real-value output to the events directly.

When the density exists with respect to the Lebesgue measure νd as per theo-

rem 2.1, then we can use the more common and familiar form for expectations,

E[f(X)] =

∫
Rd
fpXdνd =

∫
Rd
f(x)pX(x)dx. (2.8)

Functions and Functionals. While both measures and regular functions are

mappings, we make a distinction between mappings whose domain is a σ-algebra,

such as measures, and mappings whose domain is not, such as regular functions.

This distinction is emphasized by the notation of how a measure ν or a regular

function f takes its arguments. A measure takes its arguments with square brack-

ets, as in ν[·]. A regular function takes its arguments with round brackets, as

in f(·). For functionals F, or mappings that take regular functions as an input,

square brackets are also used, such as F[·].



Background 18

Typical examples of measures are the probability measure P :WΩ → [0, 1] on the

sample space Ω and the Lebesgue measure νd : ARd 7→ [0,∞) on Euclidean space

Rd, where WΩ and ARd are σ-algebras of subsets of their respective subscripts.

Typical examples of regular functions involve real-valued functions that act on a

domain f : X → R and random variables X : Ω→ X .

Typical examples of functionals are the expectation operator E that take in a

function or function composition whose domain is a σ-field of subsets of the sample

space Ω. For example, it takes in a function that maps from Ω to R such as a

random variable, and outputs a real number in R. A Lebesgue integral
∫
B
·dν with

respect to a measure ν on some set B is also a functional.

Indicator Measures and Functions. Another example of a measure is the

indicator measure 1 : W → {0, 1}. We define 1A(X) ≡ 1A ◦X := 1[X ∈ A] and

1A(x) := 1[x ∈ A]. The latter is the indicator function, and is a regular function

1A : X → {0, 1}, although it involves some abuse of notation since the shorthand

for x ∈ A is only defined if x is a random variable (and thus a mapping). Formally,

we define the indicator function as

1A(x) :=

{
1 : x ∈ A,
0 : x /∈ A.

(2.9)

Probabilities of events W can be written as expectations of indicator measures

P[W ] = E[1[W ]] for all events W ∈ W . For example, the CDF for a vector-valued

random variable X : Ω→ Rd is

PX(x) = P[X ≤ x] = E[1[X ≤ x]] = E[1(−∞,x](X)]

=

∫
Ω

1(−∞,x] ◦XdP =

∫
Rd

1(−∞,x]dPX

=

∫
(−∞,x]

dPX.

(2.10)

Datasets. A dataset consisting of n observations of d-dimensional vector quanti-

ties is often denoted using an upper case, such as X. It is a matrix of size n × d
so that X ∈ Rn×d. As such, we often write X = {xij}n,di=1,j=1 ≡ {xij}

n,d
i,j=1, where

xij is the j-th element of the i-th observation. We also denote each data point by

xi = {xij}dj=1 ≡ {xi1, . . . , xid} ≡
[
xi1 · · · xid

]T
, (2.11)

for all i ∈ Nn := {1, . . . , n}, and thus

X = {xi}ni=1 ≡ {x1, . . . ,xn} ≡
[
x1 · · · xn

]T
. (2.12)
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We use the notation {·} to stack components in the first axis. Consequently,

stacking d scalars would turn it into a Rd vector (2.11), while stacking n Rd vectors

will turn it into a Rn×d matrix (2.12).

Rather than denoting a set, the notation {ai}ni=1 denotes a generalized array since

the stacking has a particular order determined by the enumerations specified from

its subscript and superscript. We also define an alternative notation for Nn :=

{1, . . . , n} = {i}ni=1 with the shorthand [n] := {1, . . . , n} = {i}ni=1, denoting the

set of positive integers from 1 to the integer n in the subscript or bracket.

Unfortunately, the convention of using upper case letters for datasets clashes with

that of random variables. Therefore, we will often avoid this notation for datasets

and simply enumerate the dataset whenever possible such as by {xi}ni=1, even

though it may introduce extra clutter. When appropriate, alternative choices for

these notations will be made depending on the context.

2.2 Reproducing Kernel Hilbert Spaces

A reproducing kernel Hilbert space (RKHS) is space of functions whose properties,

such as smoothness or stationarity, are governed by its respective kernel. Part of

the beauty of RKHS theory is that functions can be treated and identified as

vectors, whose notions and properties are directly transferable and applicable.

To build this intuition, consider for instance an usual vector v = {vj}dj=1 whose

elements vj are indexed by j ∈ Nd := {1, . . . , d}. While vectors are identified by

the collection of its elements, it can also be thought of as a function v : Nd → F
with v : j 7→ vj, mapping an index j to its corresponding element vj. In particular,

the index positions of the vector view becomes the inputs of the function view. In

this sense, the usual view of a vector is simply a full enumeration of all possible

outputs of the function, indexed by the corresponding function inputs.

In the same way, a scalar-valued function f : X → F or f : x 7→ f(x) can also be

thought of as an usual vector by enumerating all of its possible function outputs

indexed by its corresponding function inputs {f(x)}x∈X . If X is a finite set, say

X = {xl}ml=1, then the vector form is simply f = {f(xl)}ml=1 ∈ Fm. However, if X
is a countably infinite set, say the set of all integers, or an uncountably infinite

set, say the set of real numbers or a general Euclidean space, then it may not be

immediately obvious if the vector view still stands as a valid concept, suggesting

a more formal characterization of this intuition.

The above discussion sheds light and connects two representations or views, as an

enumeration (vector) or a mapping (function), of the same particular object of
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interest. Rather than the specifics of their representations, however, formal math-

ematical objects are characterized by their properties and applicable operations.

This leads us to the notion of a vector space V over a field F.

Definition 2.5 (Field and Vector Space). A field F is a set with two operations,

addition + and multiplication ·, and has two special elements, 0 and 1, such that

for all a, b, c ∈ F the field axioms hold,

a+ b ∈ F, (Closure under Addition)

a · b ∈ F, (Closure under Multiplication)

a+ b = b+ a, (Commutativity of Addition)

(a+ b) + c = a+ (b+ c), (Associativity of Addition)

∃0 ∈ F s.t. a+ 0 = a, (Existence of Additive Identity)

∃(−a) ∈ F s.t. a+ (−a) = 0, (Existence of Additive Inverse)

a · b = b · a, (Commutativity of Multiplication)

(a · b) · c = a · (b · c), (Associativity of Multiplication)

∃1 ∈ F s.t. 1 · a = a, (Existence of Multiplicative Identity)

a · (b+ c) = a · b+ a · c. (Distributivity)

A vector space V over a field F, notated as a tuple (V ,F), is a set which satisfies

the following properties for all vectors u, v, w ∈ V in the vector space and for all

scalars a, b ∈ F in the associated field,

(u+ v) + w = u+ (v + w), (Associativity of Superposition)

u+ v = v + u, (Commutativity of Superposition)

∃0 ∈ V s.t. v + 0 = v, (Existence of Zero Vector)

∃(−v) ∈ V s.t. v + (−v) = 0, (Existence of Opposite Vector)

∃1 ∈ F s.t. 1v = v, (Existence of Unit Scalar)

a(bv) = (ab)v, (Associativity of Scaling)

(a+ b)v = av + bv, (Distributivity of Superposed Scaling)

a(u+ v) = au+ av. (Distributivity of Scaled Superposition)

Typical example of a field include the set of real numbers R or the set of complex

numbers C. In this thesis, we will usually consider vectors spaces over real numbers

and real-valued functions.

From definition 2.5, we can see that both the space of usual vectors v ∈ Fd and

functions f : X → F satisfy properties of a vector space. In particular, for spaces
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of usual vectors such as V = Fd, they satisfy vector space properties in an element-

wise fashion. For spaces of functions such as V = {f |f : X → F}, they satisfy

vector space properties in a point-wise fashion.

Intuitively, just as adjacent elements of a vector have nothing to do with each

other and need not need to be close, functions values of “adjacent” input points

need not to be close either. Recall that index positions on an usual vector is akin

to inputs to an usual function. For example, for an usual vector v ∈ F3, the values

of the first and second elements v1 and v2 need not be closer than that of the first

and third elements v1 and v3, despite their index positions being closer. Similarly,

for a function f : X → R from a vector space of functions, the values f(x1) and

f(x2) need not be closer to the values f(x1) and f(x3), even if x1 and x2 are

closer than x1 and x3. After all, the space of functions can satisfy vector space

properties by merely satisfying them point-wise. Yet, this sense of “closeness” or

“continuity” is something we would often like to endow on the space of functions

we are considering. This is especially so when algorithms are to learn from a finite

set of examples, and good generalization often depend on a sense of “continuity”

of a function, where “close” inputs should result in “close” outputs.

The above consideration focuses on relationship between constituents – elements

for vectors or point evaluations for functions – of one particular member in the

vector space. Another important consideration is concerned with the overall struc-

ture of the vector space itself and how objects in that space relate to one another.

These considerations motivates the notion of distance metrics for a sense of “close-

ness”, norms for a sense of “size”, and inner products for a sense of “similarity” as

progressively desirable properties of a vector space, especially for vector space of

functions. These notions lead to the construction of metric spaces, normed spaces,

and inner product spaces respectively. It further motivates the notion of complete-

ness for a sense of “continuity”, intuitively describing spaces with no “punctures”

in it. These notions lead to the construction of complete metric spaces, Banach

spaces, and Hilbert spaces as completed versions of metric spaces, normed spaces,

and inner product spaces respectively.

We now formally introduce these notions.

Any pair of two objects in a set, including vector spaces, can be endowed with a

sense of “distance” through a metric or distance function in that space.
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Definition 2.6 (Metric Space). A metric space (X , d) is a non-empty set X with

a metric d : X × X → R that satisfies the following properties for all x, y, z ∈ X ,

d(x, y) ≥ 0, (Distance is Nonnegative)

d(x, y) = 0 ⇐⇒ x = y, (Distance Vanishes for Equal Elements)

d(x, y) = d(y, x), (Distance is Symmetric)

d(x, y) ≤ d(x, z) + d(y, z). (Triangle Inequality)

To identify “punctures” in a set, we consider every sequence of objects that get

progressively closer and closer to each other as measured by a metric. If they all

eventually converge somewhere in the space and not outside the space, then we

can consider the set to be completely “filled” without any “punctures”.

Definition 2.7 (Cauchy Sequence). A sequence (xi), i ∈ N, in a space X is said

to be Cauchy or fundamental with respect to a metric d if for any ε > 0 there

exists n such that

d(xi, xj) < ε ∀i, j > n. (2.13)

Definition 2.8 (Complete Metric Space). A metric space (X , d) is said to be

complete if every Cauchy sequence in X with respect to d converges in X .

Vectors can be endowed with a sense of size or length through a norm operator.

Definition 2.9 (Normed Space). A norm on V is a real-valued function ‖ · ‖ :

V → R satisfying the following properties for all u, v ∈ V and a ∈ F,

‖v‖ = 0 ⇐⇒ v = 0, (Zero Vector has Zero Norm)

‖v‖ > 0 ⇐⇒ v 6= 0, (Non-Zero Vectors has Positive Norm)

‖av‖ = |a|‖v‖, (Norm of Scaled Vector is Scaled Norm of Vector)

‖u+ v‖ ≤ ‖u‖+ ‖v‖. (Triangle Inequality)

A normed space (V ,F, ‖ · ‖) is a vector space with a norm ‖ · ‖.

Definition 2.10 (Banach Space). A normed space (V ,F, ‖ · ‖) is a Banach space

if (V , d) is a complete metric space with the distance function d : (u, v) 7→ ‖u−v‖.

Often, for brevity we refer to Banach spaces (V ,F, ‖ · ‖) by just V when it is clear

from context what the associate field F and norm ‖ · ‖ are. We also often notate

Banach spaces with B instead of V .

Any pair of two vectors can be endowed with a sense of similarity through an inner

product. This describes the geometry of the space by introducing the notions of

projections and angles.
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Definition 2.11 (Inner Product Space). An inner product on a vector space (V ,F)

is a mapping 〈·, ·〉 : V×V → F satisfying the following properties for all u, v, w ∈ V
and a, b ∈ F,

〈au+ bv, w〉 = a〈u,w〉+ b〈b, w〉, (Linearity in First Argument)

〈u, v〉 = 〈v, u〉, (Conjugate Symmetry)

〈v, v〉 ≥ 0, (Positivity)

〈v, v〉 = 0 ⇐⇒ v = 0. (Zero Vector)

An inner product space or a pre-Hilbert space (V ,F, 〈·, ·〉) is a vector space (V ,F)

with an inner product 〈·, ·〉.

Definition 2.12 (Hilbert Space). An inner product space (V ,F, 〈·, ·〉) is a Hilbert

space if (V , d) is a complete metric space with the distance function d : (u, v) 7→
‖u − v‖ and the norm ‖ · ‖ : v 7→

√
〈v, v〉. That is, the metric d : V × V → R is

d : (u, v) 7→
√
〈u− v, u− v〉.

Often, for brevity we refer to Hilbert spaces (V ,F, 〈·, ·〉) by just V when it is clear

from context what the associate field F and inner product 〈·, ·〉 are. We also often

notate Hilbert spaces with H instead of V . We further notate inner products 〈·, ·〉
as 〈·, ·〉H when the associated Hilbert space H is to be emphasized or clarified.

We are now ready to introduce kernels. In this thesis, we use the following defini-

tion of a kernel.

Definition 2.13 (Kernel). A mapping k : X × X → F is kernel on domain X
if there exists a mapping φ : X → H such that k(x, x′) = 〈φ(x), φ(x′)〉 for all

x, x′ ∈ X where (H,F, 〈·, ·〉) is a Hilbert space. The mapping φ is called a feature

map induced by k on the domain X .

In this thesis we primarily consider real-valued kernels, as opposed to kernels that

evaluates to a general field, such as complex-valued kernels, or those that evaluates

to a general tensor, such as vector-valued kernels. That is, we assume that F = R.

With the field always being the set of real-numbers, we no longer need to specify

the field and from now on simply say that a Hilbert space H is endowed with an

inner product 〈·, ·〉H. Since F = R, using the conjugate symmetry property from

definition 2.11 on definition 2.13 immediately shows that real-valued kernels must

be a symmetric functions of its two variables.

Kernels are functions of two variables that measure the similarity of its two inputs.

To do this, inputs x ∈ X are represented as features φ(x) ∈ H in a feature space

H. By assuming that the feature space H is a Hilbert space, kernels use the

associated inner product to measure the notion of similarity in the sense that

higher 〈φ(x), φ(x′)〉H means that x and x′ are more similar.
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It is worthwhile to note that for a given kernel k : X × X → R, the feature map

φ may not be unique. That is, there could be multiple feature maps φ for which

k(x, x′) = 〈φ(x), φ(x′)〉H. Polynomial kernels are typical examples of this. Con-

sider the case where x ∈ X = R2. One can check that there are at least two feature

maps defined by φ1(x) =
[
x2

1 x2
2

√
2x1x2

]T
and φ2(x) =

[
x2

1 x2
2 x1x2 x2x1

]T
that correspond to the same kernel k(x,x′) = 〈φ1(x), φ1(x′)〉 = 〈φ2(x), φ2(x′)〉 =

(x1x
′
1)2 +(x2x

′
2)2 +2x1x

′
1x2x

′
2 where the inner products are the standard dot prod-

ucts in R3 and R4 respectively. Notice that in this example φ2 was constructed by

simply scaling the third feature of φ1 into x1x2 and repeating it as the third and

fourth feature of φ2 by making sure the features are scaled correctly to result in the

same kernel. With the same process, one could construct very high dimensional

features that still result in the same kernel.

Moreover, unlike the previous example, there are also kernels whose feature maps

are infinite dimensional. This includes the ubiquitous Gaussian kernel k(x,x′) =

exp (−1
2
(x− x′)TΣ−1(x− x′)) and Matérn kernels.

In practice, when learning algorithms only make use of feature maps φ(x) via

inner products 〈φ(x), φ(x′)〉H, we can instead simply compute the inner product

directly using a kernel. This is known as the kernel trick. When the features are

high dimensional, this saves computational time and memory by simply computing

the inner product, which is a scalar, directly from inputs, instead of first computing

the high dimensional features from the inputs only to finally reduce them into the

inner product. More importantly, when the features are infinite dimensional, this

enables inner product computations to become tractable in the case where it was

otherwise infeasible.

Consequently, to “kernelize” a learning algorithm, a kernel instead of a feature

map is selected, designed, or learned, and the corresponding feature map and

feature space is only implicitly defined.

Since the feature map φ is specified only implicitly for a given kernel k and there

may be multiple feature maps induced by that kernel k, it may be natural to

question whether there exists a special feature map amongst them with convenient

properties for learning or representing functions, a fundamental task in machine

learning. After all, functions and vectors are simply two views of the object

characterized by being members of a vector space. If we restrict the vector space

to be a Hilbert space, we may be able to take advantage of the representational

power of kernels, since the induced feature map φ defines a feature space H that

is also a Hilbert space in which the function could reside in.

Let H be a Hilbert space of real-valued functions on domain X . For a certain class

of kernels known as reproducing kernels, such a convenient feature map exists.
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Definition 2.14 (Reproducing Kernel). A kernel k : X ×X → R is a reproducing

kernel of a Hilbert space H if and only if

k(x, ·) ∈ H ∀x ∈ X ,
〈k(x, ·), f〉H = f(x) ∀x ∈ X ∀f ∈ H.

(2.14)

The latter criterion of which is also known as the reproducing property.

The dot notation · is a place-holder for an argument, so that the remaining object is

a function of that argument. For instance, k(x, ·) : X → R or k(x, ·) : x′ 7→ k(x, x′).

Definition 2.15 (Reproducing Kernel Hilbert Space). A Hilbert space H is a

reproducing kernel Hilbert space (RKHS) if it has a reproducing kernel k.

When a Hilbert space H has a reproducing kernel, its evaluation functional δx :

H → R characterized by δx[f ] = f(x) is simply δx = 〈k(x, ·), ·〉H.

In particular, since k(x, ·) ∈ H, the kernel value between two points can be evalu-

ated as the inner product between the feature functions at those points,

〈k(x, ·), k(x′, ·)〉H = k(x, x′). (2.15)

The above property (2.15) motivates the choice φ(x) = k(x, ·) ∈ H as the canonical

feature map when reproducing kernels of a Hilbert space exist, since it satisfies

the definition of a feature map as per definition 2.13.

Definition 2.16 (Canonical Feature Map). The canonical feature map φ of a

RKHS H with reproducing kernel k is obtained by partially applying its repro-

ducing kernel,

φ(x) = k(x, ·) ∈ H. (2.16)

Since a reproducing kernel k determines a unique canonical feature map φ which

in turn defines the feature space H, we have that a reproducing kernel k defines or

induces a canonical feature space H. We therefore say that the RKHS is induced

by k and use the notation Hk for the RKHS to emphasize this, and abbreviate the

associated inner product as 〈·, ·〉Hk ≡ 〈·, ·〉k.

Importantly, the canonical features φ(x) = k(x, ·) form a set of basis for its RKHS.

Theorem 2.2 (Xu and Zhang [2009]). The RKHS Hk induced by its reproducing

kernel k is the closure span of its canonical features,

Hk = span{k(x, ·) : x ∈ X}. (2.17)
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In particular, this means that linear combinations of canonical features are in the

RKHS,
∑n

i=1 aik(xi, ·) ∈ Hk for ai ∈ R, although not all functions in the RKHS

can be expressed in this form.

Usually, the kernel k is parametrized by a set of hyperparameters θ. Whenever it

is relevant or helpful to make this explicit, we include the hyperparameters as a

subscript kθ. Note that while there are often multiple hyperparameters such that θ

is often a vector, we will often still use a non-bold θ to emphasize and communicate

the generality that kernel hyperparameters can come in non-vectorial forms too.

In certain contexts where the symbol θ is already used for other concepts, we use

α for kα and β for `β.

2.3 Mean Embeddings

We now are ready to introduce mean embeddings, which are objects in the RKHS

that represent and encode probability distributions.

Let X : Ω→ X be a random variable taking values in X . Similarly, let Y : Ω→ Y
be a random variable taking values in Y . Let k : X ×X → R and ` : Y×Y → R be

reproducing kernels defined on X and Y respectively (definition 2.14). Let φ and ψ

be canonical feature maps induced by k and ` respectively, where φ(x) = k(x, ·) and

ψ(y) = `(y, ·) (definition 2.16). Let f ∈ Hk and g ∈ H` be real-valued functions

in the RKHSs Hk and H` induced by k and ` respectively (definition 2.15).

Definition 2.17 (Mean Embedding). The mean embedding of a distribution PX
(resp. PY ) under a kernel k (resp. `) is defined as the expectation of the canonical

feature in its induced RKHS Hk (resp. H`) with respect to said distribution,

µX := E[φ(X)] ∈ Hk,

µY := E[ψ(Y )] ∈ H`.
(2.18)

We can alternatively emphasize that the mean embedding µX ≡ µX(·) (resp.

µY ≡ µY (·)) is a function on its respective domain µX : X → R (resp. µY : Y → R),

µX(·) := E[k(X, ·)] ∈ Hk,

µY (·) := E[`(Y, ·)] ∈ H`.
(2.19)

Since it is the expectation of the kernel with respect to one of its argument, it is

also called the kernel mean, or the kernel mean embedding (KME). Alternatively,
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if the integral exists, this definition is equivalent to

µX(x) := E[k(X, x)] =

∫
X
k(·, x)dPX ,

µY (y) := E[`(Y, y)] =

∫
Y
`(·, y)dPY .

(2.20)

The dot notation · is a place-holder for an argument. In equation (2.18) it empha-

sizes that the mean embedding µX(·) : X → R (resp. µY (·) : Y → R) is a function

in the RKHS. In equation (2.20) the place holder in equation (2.19) is filled with

a specific evaluation x ∈ X (resp. y ∈ Y). Note that the dot notation · in equa-

tion (2.20) is for a different argument than equation (2.19), as this argument is to

be integrated out in the Bochner integral written out above.

In some literature, to make explicit of the fact that the mean embedding is an

embedding of a distribution measure PX , the mean embedding is instead denoted

by µPX . Nevertheless, since a random variable X and its distribution PX are

specified together, either notation is equally informative.

When densities exist as per theorem 2.1, then mean embeddings can be written as

µX := E[k(X, ·)] =

∫
X
k(x, ·)pX(x)dx,

µY := E[`(Y, ·)] =

∫
Y
`(y, ·)pY (y)dy.

(2.21)

Importantly, mean embeddings equation (2.18) do not rely on the existence of den-

sities. In this sense, mean embeddings can be applied in general settings where

quantities of interest can be expressed as expectations, alleviating the need for per-

forming often intractable integrals with respect to densities. A canonical example

include finding expectations of functions under these encoded distributions.

Theorem 2.3 (Function Expectation). The expectation of a function f ∈ Hk

(resp. g ∈ H`) of a random variable X (resp. Y ) with distribution PX (resp. PY )

can be evaluated as the inner product between the corresponding mean embedding

and the function,
〈µX , f〉k = E[f(X)],

〈µY , g〉` = E[g(Y )].
(2.22)

Proof. Consider the inner product,

〈µX , f〉k = 〈E[φ(X)], f〉k (definition 2.17)

= E[〈φ(X), f〉k] (bilinearity of 〈·, ·〉 and linearity of E[·])
= E[f(X)]. (definition 2.14)
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The remaining equation in (2.22) follows by a parallel derivation.

We call the kernel characteristic if the mapping from probability measures PX
(resp. PY ) to their mean embeddings µX (resp. µY ) in the associated RKHS Hk

(resp. H`) is injective. In this sense, the mean embedding is said to encode or

represent the corresponding distribution in the RKHS, since distributions can be

characterized by its mean embedding. Intuitively, having the ability to compute

expectations of any function in the RKHS under the distribution of interest, as

well as knowing the kernel inducing the RKHS, is as informative and useful as

knowing the distribution itself.

The characteristic property of kernels is heavily interlinked to the notions of uni-

versality and positive definiteness, although implications between them vary de-

pending on the class of kernels chosen [Sriperumbudur et al., 2011]. Loosely,

universality is concerned with whether the RKHS induced by the kernel in consid-

eration is rich enough to approximate any target function arbitrarily well, while

positive definiteness enables desirable properties such as symmetry and invertibil-

ity of operators. In this thesis, we will often assume and employ kernel classes

that have all these properties.

2.4 Conditional Mean Embeddings

We now introduce conditional mean embeddings (CMEs), which are objects in

the RKHS that represent and encode conditional probability distributions. By

definition, they are a type of mean embedding whose encoded distribution is con-

ditional, rather than marginal. As such, results that pertain to mean embeddings

hold directly for CMEs. When we want to emphasize our discussions specifically

on mean embeddings that encode marginal distributions, as opposed to conditional

distributions, then we use the terminology marginal mean embeddings.

Given that CMEs are a type of mean embeddings, what interesting properties do

they have that we could not obtain by viewing them simply as a type of mean

embedding? After all, the mean embedding of PX is µX , so the mean embedding

of PX|Y=y is µX|Y=y, and we simply call this the CME.

Frameworks based on the CME become interesting in the case when the condi-

tioned variable is seen also as a variable of interest, as opposed to fixed. This

includes instances where instead of having one particular distribution PX|Y=y, we

have a family of distributions PX|Y := {PX|Y=y}y∈Y indexed by the conditioned

variable. In other words, we consider distributions conditioned across a family of

events, and not just a single event. Another interesting instance is when the con-

ditioned variable itself also has a distribution PY specified completely separately
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or independently from the family of conditional distributions PX|Y , describing the

distribution of the family of events being conditioned.

Consequently, it is very helpful and constructive to form operator views of CMEs.

In this view, instead of seeing them as mean embeddings of conditional distri-

butions, they can be further decomposed into components formed from mean

embeddings of marginal distributions only, where these mean embeddings can be

seen as higher order operators. This is analogous to the way conditional densities

can be decomposed into components formed from only marginal densities such as

pX|Y (x|y) = pXY (x, y)/pY (x). In fact, these analogies can be made formal to ex-

press probability rules in the RKHS with such operators, and is a key motivation

and element of the KME framework.

In this section, we will review CMEs in a fashion that is faithful to the manner

they are presented in the literature [Muandet et al., 2017, Song et al., 2013, 2009].

Importantly, in each subsequent chapter, we will briefly review CMEs again within

the context of their problem setting. This is because our contributions begin by

carefully formulating perspectives to the problem setting such that CMEs become

their natural solutions. In particular, chapter 5 will reformulate CMEs slightly,

using a different set of definitions which result in an equivalent set of properties for

the CME. This slight reformulation would motivate insights that are important to

the development and contributions presented in chapter 5.

We begin with an introduction to cross-covariance operators and operator nota-

tions in general, especially for operators formed from second-order tensors.

Definition 2.18 (Tensor Products as Operators). Suppose a ∈ H1 and b ∈ H2.

Applying the tensor product (a ⊗ b) ∈ H1 ⊗H2 on c ∈ H2 results in an element

in H1 defined by

(a⊗ b)c := a〈b, c〉H2
= 〈b, c〉H2

a ∈ H1. (2.23)

Definition 2.19 (Inner Products of Tensor Products). Suppose a, c ∈ H1 and

b, d ∈ H2. The inner product of the two tensor products are defined to be the

product of the corresponding component inner products,

〈a⊗ b, c⊗ d〉H1⊗H2
:= 〈a, c〉H1

〈b, d〉H2
. (2.24)

We will refer to the order of the tensor product by the number of vectors, in

the Hilbert space sense, that is used to form the tensor product. For instance,

a ⊗ b ⊗ c ⊗ d would be a fourth order tensor. When only second-order tensors

are involved, tensors act analogously to usual matrices and vectors in the general

Hilbert space sense act as usual vectors. Consequently, when only second-order

tensors are involved and the Hilbert spaces involved are clear from context, we

use the slight abuse of notation abT = a ⊗ b and bT c = 〈b, c〉H. This becomes
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helpful for writing linear combinations of tensor products succinctly using matrix

notation, which will be appear when empirical estimates are introduced.

Definition 2.20 (Uncentered Cross-Covariance Operators). The uncentered cross-

covariance operators, or cross-covariance operators for short, are second-order

mean embeddings,

CXX := E[φ(X)⊗ φ(X)] ∈ Hk ⊗Hk,

CXY := E[φ(X)⊗ ψ(Y )] ∈ Hk ⊗H`,

CY X := E[ψ(Y )⊗ φ(X)] ∈ H` ⊗Hk,

CY Y := E[ψ(Y )⊗ ψ(Y )] ∈ H` ⊗H`.

(2.25)

Since φ(x) := k(x, ·) and ψ(y) := `(y, ·) as per definition 2.16, we can alternatively

emphasize that the uncentered cross-covariance operators are functions of two

variables on the tensor products of two domains,

CXX(·, ·) := E[k(X, ·)⊗ k(X, ·)] ∈ Hk ⊗Hk,

CXY (·, ·) := E[k(X, ·)⊗ `(Y, ·)] ∈ Hk ⊗H`,

CY X(·, ·) := E[`(Y, ·)⊗ k(X, ·)] ∈ H` ⊗Hk,

CY Y (·, ·) := E[`(Y, ·)⊗ `(Y, ·)] ∈ H` ⊗H`.

(2.26)

Alternatively, this definition is equivalent to

CXX(x, x′) := E[k(X, x)k(X, x′)] =

∫
X
k(·, x)k(·, x′)dPX ,

CXY (x, y) := E[k(X, x)`(Y, y)] =

∫
X×Y

k(·, x)`(·, y)dPXY ,

CY X(y, x) := E[`(Y, y)k(X, x)] =

∫
Y×X

`(·, y)k(·, x)dPY X ,

CY Y (y, y′) := E[`(Y, y)`(Y, y′)] =

∫
Y
`(·, y)`(·, y′)dPY .

(2.27)

In the above, the placeholders · are integrated out under the probability mea-

sure. When densities exist as per theorem 2.1, then uncentered cross-covariance

operators can be written as

CXX(·, ·) := E[k(X, ·)k(X, ·)] =

∫
X
k(x, ·)k(x, ·)pX(x)dx,

CXY (·, ·) := E[k(X, ·)`(Y, ·)] =

∫
X

∫
Y
k(x, ·)`(y, ·)pXY (x, y)dydx,

CXY (·, ·) := E[`(Y, ·)k(X, ·)] =

∫
Y

∫
X
`(y, ·)k(x, ·)pY X(y, x)dxdy,

CY Y (·, ·) := E[`(Y, ·)`(Y, ·)] =

∫
Y
`(y, ·)`(y, ·)pY (y)dy.

(2.28)
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In the above, placeholders · are left open for evaluation. For instance, evaluating

CXY gives CXY (x′, y′) := E[k(X, x′)`(Y, y′)] =
∫
X

∫
Y k(x, x′)`(y, y′)pXY (x, y)dydx.

While pXY 6= pY X since pXY (a, b) 6= pY X(a, b), we have that pXY (a, b) = pY X(b, a)

so that pXY (x, y) = pY X(y, x). Here 6= denotes “is not necessarily equal to”.

Since cross-covariance operators are simply second-order mean embeddings, we

also occasionally notate them as as mean embedding such as µXX ≡ CXX and

µXY ≡ CXY . Nevertheless, they are most useful when viewed as operators.

Lemma 2.1. CXY ∈ Hk ⊗ H` can be identified as the operator CXY : H` → Hk

where for all g ∈ H`,

CXY g = E[g(Y )φ(X)] ∈ Hk. (2.29)

Proof. The result follows from treating CXY as an operator under definition 2.18,

CXY g = E[φ(X)⊗ ψ(Y )]g (definition 2.20)

= E[(φ(X)⊗ ψ(Y ))g] (linearity of E[·])
= E[φ(X)〈ψ(Y ), g〉`] (definition 2.18)

= E[g(Y )φ(X)]. (definition 2.14)

Corollary 2.1. Consequently, CXY : H` → Hk encodes the uncentered cross-

covariance between any pair of functions f ∈ Hk and g ∈ H`,

〈CXY g, f〉k = E[f(X)g(Y )]. (2.30)

Proof. The result follows from direct application of the inner product,

〈CXY g, f〉k = 〈E[g(Y )φ(X)], f〉k (lemma 2.1)

= E[g(Y )〈φ(X), f〉k] (bilinearity of 〈·, ·〉)
= E[f(X)g(Y )]. (definition 2.14)

Lemma 2.2. Alternatively, since CXY ∈ Hk ⊗H`, the inner product of CXY and

an outer product of functions f ⊗ g ∈ Hk ⊗ H` result in the same uncentered

cross-covariance,

〈CXY , f ⊗ g〉k⊗` = E[f(X)g(Y )], (2.31)

where 〈·, ·〉k⊗` is shorthand for 〈·, ·〉Hk⊗H`.
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Proof. The result follows from definition 2.19 of inner products on tensor products,

〈CXY , f ⊗ g〉k⊗` = 〈E[φ(X)⊗ ψ(Y )], f ⊗ g〉k⊗` (definition 2.20)

= E[〈φ(X)⊗ ψ(Y ), f ⊗ g〉k⊗`] (bilinearity of 〈·, ·〉)
= E[〈φ(X), f〉k〈ψ(Y ), g〉`] (definition 2.19)

= E[f(X)g(Y )]. (definition 2.14)

Together, corollary 2.1 and lemma 2.2 reveal multiple ways the cross-covariance

operator CXY encodes the cross-covariance of functions,

〈CXY g, f〉k = 〈CXY , f ⊗ g〉k⊗` = 〈CY Xf, g〉`
= E[f(X)g(Y )].

(2.32)

where the second equality is obtained through symmetry. In particular, corol-

lary 2.1 provides the view that cross-covariance operators are operators from one

space to the other, while lemma 2.2 presents the view that they are mean embed-

dings in the joint or tensor space.

Nevertheless, there are relationships that cross-covariance operators provide that

are only evident in the operator view. This is the case where we move our focus

to functions formed through expectations.

Theorem 2.4 (Fukumizu et al. [2009]). Define f in relation to g as follows and

assume f ∈ Hk,

f := E[g(Y )|X = ·] ∈ Hk. (2.33)

Then, the following result hold,

CXXf = CXY g. (2.34)

Further, if the inverse of the operator CXX exists, then we have that

f := E[g(Y )|X = ·] = C−1
XXCXY g. (2.35)
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Proof. The result follows from treating CXX as an operator under definition 2.18,

CXXf = E[φ(X)⊗ φ(X)]f (definition 2.20)

= E[(φ(X)⊗ φ(X))f ] (linearity of E[·])
= E[φ(X)〈φ(X), f〉k] (definition 2.18)

= E[φ(X)f(X)] (definition 2.14)

= E[φ(X)E[g(Y )|X]] (equation (2.33))

= E[E[φ(X)g(Y )|X]] (X is given)

= E[φ(X)g(Y )] (tower property)

= CXY g. (lemma 2.1)

If the inverse of the operator CXX exists, then we can write the following,

CXXf = CXY g, (equation (2.34))

f = C−1
XXCXY g, (C−1

XX exists)

E[g(Y )|X = ·] = C−1
XXCXY g. (equation (2.33))

As a function in Hk which contains real-valued functions on X , the evaluation of

f : E[g(Y )|X = ·] on x is f(x) = E[g(Y )|X = x].

Definition 2.21 (Conditional Mean Embedding). The conditional mean embed-

ding (CME) of a conditional distribution PY |X=x (resp. PX|Y=y) under a kernel

` (resp. k) is defined as the expectation of the canonical feature in its induced

RKHS H` (resp. Hk) with respect to said distribution,

µY |X=x := E[ψ(Y )|X = x],

µX|Y=y := E[φ(X)|Y = y].
(2.36)

We can alternatively emphasize that the CME µY |X=x ≡ µY |X=x(·) (resp. µX|Y=y ≡
µX|Y=y(·)) is a function on its respective domain µY |X=x : Y → R (resp. µX|Y=y :

X → R),

µY |X=x(·) := E[`(Y, ·)|X = x],

µX|Y=y(·) := E[k(X, ·)|Y = y].
(2.37)

Since it is the conditional expectation of the kernel with respect to one of its

argument, it is also called the conditional kernel mean, or the conditional kernel

mean embedding. Alternatively, this definition is equivalent to

µY |X=x(y) := E[`(Y, y)|X = x] =

∫
Y
`(·, y)dPY |X=x,

µX|Y=y(x) := E[k(X, x)|Y = y] =

∫
X
k(·, x)dPX|Y=y.

(2.38)
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When densities exist as per theorem 2.1, then CMEs can be written as

µY |X=x := E[`(Y, ·)|X = x] =

∫
Y
`(y, ·)pY |X(y|x)dy,

µX|Y=y := E[k(X, ·)|Y = y] =

∫
X
k(x, ·)pX|Y (x|y)dx.

(2.39)

Theorem 2.5 (Function Conditional Expectation). The conditional expectation

of a function can be evaluated as the inner product between the corresponding CME

and the function, which can also be obtained by applying cross-covariance operators

to the function and then evaluating that function,

〈µY |X=x, g〉` = E[g(Y )|X = x] = (C−1
XXCXY g)(x),

〈µX|Y=y, f〉k = E[f(X)|Y = y] = (C−1
Y YCY Xf)(y).

(2.40)

Proof. The proof follows from the reproducing property and theorem 2.4.

〈µY |X=x, g〉 = 〈E[ψ(Y )|X = x], g〉 (definition 2.21)

= E[〈ψ(Y ), g〉|X = x] (bilinearity of 〈·, ·〉)
= E[g(Y )|X = x] (definition 2.14)

= (E[g(Y )|X = ·])(x) (notation: f ≡ f(·))
= (C−1

XXCXY g)(x). (theorem 2.4)

Definition 2.22 (Conditional Mean Operator). The conditional mean operator

(CMO) CY |X is defined by the operator that maps the canonical feature of the

conditioned variable to the conditional mean embedding,

µY |X=x = CY |Xφ(x). (2.41)

Theorem 2.6 (Conditional Mean Operator). Assuming C−1
XX exists, the condi-

tional mean operator CY |X can be expressed in terms of cross-covariance operators,

CY |X = CY XC
−1
XX . (2.42)

Proof. The proof relies on the tower property E[E[A|B]] = E[A]. Importantly,

E[A|B] is a random variable with its distribution determined by B. We use the no-

tation µY |X in a similar manner, which describes a random variable ω 7→ µY |X=X(ω)
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Table 2.1: Mean embeddings and their encoded expectations. Switch X ↔ Y
for all combinations. Since the bottom two rows do not apply for the first
column, additional equivalences for the last column are provided instead. Let
g, g′ ∈ H` and f ∈ Hk be generic example functions in their respective RKHSs.

Random Y (Y, Y ) (X, Y ) X|Y = y
Variable : Ω→ Y : Ω→ Y × Y : Ω→ X × Y : Ω→ X

Density pY ∈ PY pY Y ∈ PY×Y pXY ∈ PX×Y pX|Y=y ∈ PX
Function pY (y) ∈ R+ pY Y (y, y′) ∈ R+ pXY (x, y) ∈ R+ pX|Y=y(x) ∈ R+

Mean Map µY := µY Y := µXY := µX|Y=y =
Definition E[`(Y, ·)] E[`(Y, ·)⊗ `(Y, ·)] E[k(X, ·)⊗ `(Y, ·)] E[k(X, ·)|Y = y]

Mean µY ∈ H` µY Y ∈ H`` µXY ∈ Hk` µX|Y=Y ∈ Hk

Embedding µY (y) ∈ R µY Y (y, y′) ∈ R µXY (x, y) ∈ R µX|Y=y(x) ∈ R

Encoded 〈µY , g〉` 〈µY Y , g′ ⊗ g〉`⊗` 〈µXY , f ⊗ g〉k⊗` 〈µX|Y=y, f〉k
Expectation = E[g(Y )] = E[g′(Y )g(Y )] = E[f(X)g(Y )] = E[f(X)|Y = y]

Operator CX|YCY Y CY Y := µY Y CXY := µXY CX|Y `(y, ·) :=
Definition = CXY (CY Y )T = CY Y (CXY )T = CY X µX|Y=y

Encoded fTCXY = 〈g′, CY Y g〉` 〈f, CXY g〉k (CX|Y )Tf = g :=
Expectation gTCY Y = E[g′(Y )g(Y )] = E[f(X)g(Y )] E[f(X)|Y = ·]

taking values in H`. With such a slight abuse of notation, we arrive at the result,

CY X :=E[ψ(Y )⊗ φ(X)] (definition 2.20)

=E[E[ψ(Y )⊗ φ(X)|X]] (tower property)

=E[E[ψ(Y )|X]⊗ φ(X)] (X is given)

=E[µY |X ⊗ φ(X)] (definition 2.21)

=E[(CY |Xφ(X))⊗ φ(X)] (definition 2.22)

=E[CY |X(φ(X)⊗ φ(X))] (associativity)

=CY |XE[φ(X)⊗ φ(X)] (linearity of E[·])
=CY |XCXX . (definition 2.20)

Therefore, if C−1
XX exists, then (2.42) holds.

Table 2.1 review mean embeddings and operators with their encoded expectations.

2.5 Empirical Mean Embeddings

In practice, the actual probability distributions of interest are not available in

closed form. Instead, independent and identically distributed (iid) samples from

such probability distributions are available. Suppose that marginal samples {xi}ni=1
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and {yi}ni=1 are observed and collected in an iid fashion from the marginal distribu-

tions PX and PY . It is possible to represent marginal mean embeddings empirically

such that in the limit of infinite data, the empirical representations would converge

to the true representations at an appropriate rate. Most significant, however, is

the fact that important results for the relationships between mean embeddings

also hold for their empirical counterparts.

Definition 2.23 (Empirical Mean Embedding). The empirical mean embedding

of an empirical distribution P̂X (resp. P̂Y ) described by a set of iid samples

{xi}ni=1 (resp. {yi}ni=1) from PX (resp. PY ) under a kernel k (resp. `) is defined by

the empirical mean of the canonical feature in its induced RKHS Hk (resp. H`)

with respect to said distribution,

µ̂X :=
1

n

n∑
i=1

φ(xi),

µ̂Y :=
1

n

n∑
i=1

ψ(yi).

(2.43)

Since they are simply defined to be empirical means of RKHS vectors, their con-

vergence properties are analogous to empirical means of usual vectors.

Theorem 2.7 (Song et al. [2009]). Empirical mean embeddings µ̂X ∈ Hk (resp.

µ̂Y ∈ H`) converges to their true mean embeddings µX ∈ Hk (resp. µY ∈ H`) in

its respective RKHS norm at a rate of Op(n
− 1

2 ).

Empirical estimates for function expectations can thus be expressed as inner prod-

ucts with empirical mean embeddings.

Theorem 2.8 (Empirical Function Expectation). The empirical mean of a func-

tion f ∈ Hk (resp. g ∈ H`) over samples {xi}ni=1 (resp. {yi}ni=1) from distribution

PX (resp. PY ) can be evaluated as the inner product between the corresponding

empirical mean embedding and the function,

〈µ̂X , f〉k =
1

n

n∑
i=1

f(xi),

〈µ̂Y , g〉` =
1

n

n∑
i=1

g(yi).

(2.44)
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Proof. Consider the inner product,

〈µ̂X , f〉k = 〈 1
n

n∑
i=1

φ(xi), f〉k (definition 2.23)

=
1

n

n∑
i=1

〈φ(xi), f〉k (bilinearity of 〈·, ·〉)

=
1

n

n∑
i=1

f(xi). (definition 2.14)

In particular, it is worthwhile to note that the result that 1
n

∑n
i=1 f(xi) is an

empirical estimate to E[f(X)] can be shown even without using the fact that f is

not in the RKHS Hk, meaning that the RKHS is consistent with standard results,

and merely provides a way for encoding these operations or results as effectively

infinite dimensional operators or embeddings.

2.6 Empirical Conditional Mean Embeddings

We now present important results for empirical CMEs. To do so, we will introduce

convenient notations so that results can be expressed more succinctly.

Similar to marginal mean embeddings, CMEs can also be represented empirically

through finite samples. While we can construct empirical CMEs by forming them

from iid samples from a conditional distribution PX|Y=y for a fixed y ∈ Y , in

practice it can be impractical to obtain enough samples for each conditional dis-

tribution corresponding to each different y ∈ Y . In practice, a more common

scenario involves collecting joint samples {xi, yi}ni=1 in an iid fashion from some

joint distribution PXY . This means that only one sample of X, being xi, is sampled

from PX|Y=yi . Unless yi = yj for some pair of i 6= j ∈ Nn, we do not benefit from

having multiple samples of X at each Y as information regarding the conditional

distribution. Importantly, we are only interested in PX|Y , and not PY , even though

PXY contains information for both. The beauty of empirical CMEs is reflected in

its ability to encode the empirical mean embedding of the conditional distribution

PX|Y=y from samples {xi, yi}ni=1 of the joint distribution PXY directly, regardless

of the marginal distribution PY that was involved.

Nevertheless, as we only have joint samples {xi, yi}ni=1 from the joint distribution

PXY instead of sets of samples from conditional distributions, empirical estima-

tions for CMEs cannot be obtained from a simple empirical mean. Instead, we

decompose the conditional mean operator into cross-covariance operators, which
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are second-order mean embeddings, and use joint or marginal samples to empiri-

cally estimate those operators.

Definition 2.24 (Empirical Uncentered Cross-Covariance Operators). The em-

pirical uncentered cross-covariance operator of an empirical distribution P̂XY de-

scribed by a set of iid samples {xi, yi}ni=1 from PXY under the kernels k and ` is

defined by the empirical mean of the tensor products of the canonical features in

their induced RKHSs Hk and H` with respect to said distribution,

ĈXX :=
1

n

n∑
i=1

φ(xi)⊗ φ(xi),

ĈXY :=
1

n

n∑
i=1

φ(xi)⊗ ψ(yi),

ĈY X :=
1

n

n∑
i=1

ψ(yi)⊗ φ(xi),

ĈY Y :=
1

n

n∑
i=1

ψ(yi)⊗ ψ(yi).

(2.45)

Since the conditional mean operator can be decomposed into cross-covariance op-

erators as per theorem 2.6, we can define the empirical conditional mean operator

by replacing the corresponding cross-covariance operators by their empirical esti-

mates as per definition 2.24.

Definition 2.25 (Empirical Conditional Mean Operator). Motivated by theo-

rem 2.6, the empirical CMO is defined by

ĈY |X := ĈY X(ĈXX + λI)−1. (2.46)

where λ is a regularization hyperparameter and I is the identity operator.

Definition 2.26 (Empirical Conditional Mean Embedding). Motivated by defi-

nition 2.22, the empirical CME conditioned on x ∈ X is defined by

µ̂Y |X=x := ĈY |Xφ(x). (2.47)

Due to the reproducing property in H`, the evaluation of the empirical CME at

y ∈ Y is thus

µ̂Y |X=x(y) = ψ(y)T ĈY |Xφ(x). (2.48)

The regularization hyperparameter λ is introduced to relax the operator inversion

[Song et al., 2009]. Its value is to be decayed accordingly as n increases in order

for the empirical CME to converge to the true CME.

Theorem 2.9. Empirical CMEs µ̂Y |X=x ∈ H` converge to their true CMEs µY |X=x ∈
H` in its respective RKHS norm at a rate Op((nλ)−

1
2 + λ

1
2 ).



Background 39

Consequently, if λ decays at O(n−
1
2 ), then the CME converges at Op(n

− 1
4 ). Im-

portantly, like empirical marginal mean embedding, it is worthwhile to note that

the convergence rate of empirical CMEs do not depend on the dimensionality of

the random variables involved explicitly. This is because each sample x ∈ X
and y ∈ Y have been mapped into infinite dimensional features k(x, ·) ∈ Hk and

`(y, ·) ∈ H`. Consequently, kernel mean estimation do not suffer from the curse of

dimensionality as much as methods that operate directly in the usual probability

space, such as density estimation.

In practice, the regularization hyperparameter avoids numerical singularity errors,

as well as serves to prevent underfitting. However, the exact form of inverse regu-

larization remains to be justified. Furthermore, the methodology for determining

the appropriate value of λ remains to be established. Insights towards these issues

can be gained by viewing the empirical CMO the solution to a function-valued

regularized least squares regression problem in the RKHS [Grünewälder et al.,

2012],

ĈY |X = arg min
C:Hk→H`

1

n

n∑
i=1

‖`(yi, ·)− Ck(xi, ·)‖2
H` + λ‖C‖2

HS, (2.49)

where ‖ · ‖HS denotes the HS norm. This provides a regression view to empirical

CMOs, and explains that the regularization hyperparameter serves to shrink the

size of the empirical CMO with respect to its HS norm. However, this regres-

sion objective may not correspond to the learning or inference task in particular

settings.

Note that the optimization is over the space of operators from Hk to H` for fixed

kernels k and ` and fixed regularization hyperparameter λ. We can write this

result to make the dependence on the hyperparameters explicit,

Ĉ
(α,β,λ)
Y |X = arg min

C:Hk→H`

1

n

n∑
i=1

‖`β(yi, ·)− Ckα(xi, ·)‖2
H`β

+ λ‖C‖2
HSα,β

. (2.50)

We now append the superscript (T ) to emphasize that the data the solution of the

empirical CMO is trained on is called the training set,

Ĉ
(α,β,λ),(T )
Y |X = arg min

C:Hk→H`

1

n(T )

n(T )∑
i=1

‖`β(y
(T )
i , ·)− Ckα(x

(T )
i , ·)‖2

H`β
+ λ‖C‖2

HSα,β
. (2.51)

To select hyperparameters, we cannot minimize the above regularized least squares

objective on the training data further over the hyperparameters. Since the empir-

ical CMO is already the optimal solution over the space of operators, if we further

minimize this objective over the hyperparameters, this can result in hyperparam-

eters that lead to empirical CMOs that have a low value for the objective only on

the training set. In other words, we run the risk of overfitting. Consequently, we
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instead minimize the regularized least squares objective with the trained empirical

CMO (definition 2.25) over a validation set denoted by the superscript (V ) [Song

et al., 2013],

L(V )(α, β, λ) =
1

n(V )

n(V )∑
j=1

‖`β(y
(V )
j , ·)−Ĉ(α,β,λ),(T )

Y |X kα(x
(V )
j , ·)‖2

H`+λ‖Ĉ
(α,β,λ),(T )
Y |X ‖2

HSα,β
.

(2.52)

To compute the final cross validation objective, shuffle the folds as per standard

procedure for training and validation sets and average the validation objectives.

Note that the regularization term λ‖Ĉ(α,β,λ),(T )
Y |X ‖HS is still included even though it

appears to trivially vanish when λ = 0 because the CMO Ĉ
(α,β,λ),(T )
Y |X also depends

on λ and the overall objective may not be minimized at λ = 0.

While this hyperparameter learning strategy can be applied in any general setting,

it has two major problems. The first and more straightforward problem is that

it can be computationally heavy to evaluate the cross validation objective and its

gradients, if required for optimization, at each optimization iteration. The second

and less defined problem is that such a regularized square loss in the RKHS is not

necessarily always the most appropriate loss to use for hyperparameter learning in

many learning and inference settings. That is, hyperparameters learned this way

may not necessarily be optimal for the task. As such, hyperparameter learning of

CMEs in different settings still remain as a challenging problem.

Since the empirical CMO can be expressed entirely as linear operations, with con-

stituents formed by linear combinations of canonical features in the RKHS, they

only require inner products of features rather than features themselves. Conse-

quently, we can employ the kernel trick and write their nonparametric form. To do

this, however, it is useful to introduce and borrow notations from standard matrix

algebra so that derivations can be written more succinctly.

As RKHSs are vector spaces, we make use of the notion that functions can be seen

as vectors. Consequently, we informally borrow the notion of dimensionality and

set it as the cardinality of the its domain. For example, if the domain X = Rd is

the d dimensional euclidean space whose cardinality is uncountably infinite, then

the feature function can be viewed as an uncountably infinite dimensional feature

vector, indexed by the elements of X = Rd.

For the purpose of building intuition using analogy, in the following discussion we

will informally refer to the cardinality of X as ‖X‖, and similarly the cardinality

of Y as ‖Y‖, despite their cardinality often being uncountably infinite. With

the observations {xi, yi}ni=1 sampled from PXY , there are n feature vectors for

each RKHS, {φ(xi)}ni=1 for Hk and {ψ(yi)}ni=1 for H`. As elements within their

respective RKHS, φ(xi) has an effective dimension of ‖X‖ × 1 and ψ(yi) has an

effective dimension of ‖Y‖× 1. Since this can be said about the feature functions,
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which form the basis for the RKHS as per theorem 2.2, this also applies to general

functions within the RKHS. As such, an alternative notation for the inner product

between functions f1, f2 ∈ Hk is

〈f1, f2〉k = fT1 f2. (2.53)

It can be conceptually helpful to informally check that fT1 is of size 1× ‖X‖ and

f2 is of size ‖X‖ × 1 so that the result is a scalar of size 1× 1.

Similarly, an alternative notation for second-order tensor products between func-

tions f1, f2 ∈ Hk is

f1 ⊗ f2 = f1f
T
2 . (2.54)

Recall that a matrix A :=
[
a1 · · · an

]
∈ Rd×n, ai ∈ Rd ∀i ∈ Nn, operated on a

vector v ∈ Rd results in a vector that is the linear combination of the columns of

A with coefficients given by the components of v,

Av =
[
a1 · · · an

] v1

...

vn

 =
n∑
i=1

viai. (2.55)

Similarly, a feature matrix can be defined in the same way such that empiri-

cal representations of KMEs can be reduced down to linear algebraic operations.

However, instead of d, the dimensionality of each vector becomes informally the

cardinality of the domain.

Definition 2.27 (Feature Matrix). A feature matrix is formed by stacking the

corresponding feature vectors horizontally, where each feature vector represents a

column of that matrix,

Φ :=
[
φ(x1) · · · φ(xn)

]
,

Ψ :=
[
ψ(y1) · · · ψ(yn)

]
.

(2.56)

Informally, Φ has effective size ‖X‖ × n and Ψ has effective size ‖Y‖ × n.

Often, kernel methods require kernel evaluations between all pairs of data samples.

These values are stored in a gram matrix.

Definition 2.28 (Kernel Gram Matrix). The gram matrix K (resp. L) of a kernel

k (resp. `) for some dataset {xi}ni=1 (resp. {yi}ni=1) is the matrix of all paired kernel

evaluations between the samples,

K := {k(xi, xj)}n,ni=1,j=1,

L := {`(yi, yj)}n,ni=1,j=1.
(2.57)
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When a new sample is to be compared to the set of data samples, such as a new

query point, we also require kernel evaluations between the new sample and data

samples. These values are stored in a gram vector.

Definition 2.29 (Kernel Gram Vector). The gram vector k(x) (resp. `(y)) of a

kernel k (resp. `) evaluated on some sample x ∈ X (resp. y ∈ Y) is the vector

of all kernel evaluations between the sample and the data samples {xi}ni=1 (resp.

{yi}ni=1),

k(x) := {k(xi, x)}ni=1,

`(y) := {`(yi, y)}ni=1.
(2.58)

With the convenient notations introduced above, we can write vectorized equations

that use the reproducing property as follows,

K = ΦTΦ,

L = ΨTΨ,

k(x) = ΦTφ(x),

`(y) = ΨTψ(y).

(2.59)

We can further write empirical cross-covariance operators (2.45) more succinctly

as

ĈXX =
1

n
ΦΦT ,

ĈXY =
1

n
ΦΨT ,

ĈY X =
1

n
ΨΦT ,

ĈY Y =
1

n
ΨΨT .

(2.60)

In order to write the nonparametric form for empirical CMEs, we would require a

special case of a standard result in linear algebra known as the Sherman–Morrison-

Woodbury formula.

Theorem 2.10 (Sherman–Morrison–Woodbury). A special case of the Sherman–

Morrison–Woodbury formula states that for any linear operators B ∈ Rn×m and

C ∈ Rm×n and identity operators In and Im, the following identity holds

B(CB + Im)−1 = (BC + In)−1B. (2.61)

The result holds for all operators of finite dimensionality. This results also holds

for bounded linear operators [Xu, 2017]. Note that if our features φ(x) are bounded

for all x ∈ X , then our feature matrices as per definition 2.27 is a bounded operator

since it is finite collection of such features.
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Therefore, from here onwards we will require that our features are bounded, mean-

ing that ‖φ(x)‖2
k = ‖k(x, ·)‖2

k = 〈k(x, ·), k(x, ·)〉k = k(x, x) is bounded for all

x ∈ X . This is satisfied for many kernels we use in practice, such as the Gaussian

kernel.

Theorem 2.11 (Nonparametric Conditional Mean Operator). The empirical CMO

can be expressed nonparametrically as

ĈY |X = Ψ(K + λIn)−1ΦT . (2.62)

Proof. The result follows from theorem 2.10 and the vectorized notations (2.60)

and (2.59),

ĈY |X = ĈY X(ĈXX + λI)−1 (definition 2.25)

=
1

n
ΨΦT (

1

n
ΦΦT + λI)−1 (equation (2.60))

= ΨΦT (ΦΦT + nλI)−1 ( 1
n

cancels)

= Ψ(ΦTΦ + nλI)−1ΦT (theorem 2.10)

= Ψ(K + nλI)−1ΦT . (equation (2.59))

It can be conceptually helpful to note that Ψ has size ‖Y‖ × n, (K + λI)−1 has

size n× n, and ΦT has size n× ‖X‖, resulting in the appropriate size ‖Y‖ × ‖X‖
for ĈY |X .

Theorem 2.12 (Nonparametric Conditional Mean Embedding). The empirical

CME conditioned on x ∈ X can be expressed nonparametrically as

µ̂Y |X=x := ĈY |Xφ(x) = Ψ(K + nλI)−1k(x). (2.63)

Proof. The result follows from theorem 2.11 and the vectorized notations (2.59),

ĈY |Xφ(x) = Ψ(K + nλI)−1ΦTφ(x), (theorem 2.11)

= Ψ(K + nλI)−1k(x). (equation (2.59))

Due to the reproducing property in H`, the evaluation of the empirical CME at

y ∈ Y is thus

µ̂Y |X=x(y) = ψ(y)T ĈY |Xφ(x) = `(y)T (K + nλI)−1k(x). (2.64)
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Importantly, the empirical CME may evaluate to negative values even if its true

CME never evaluates to negative values. Consider the case where the kernels k

and ` always evaluates to nonnegative values. That is k(x, x′) ≥ 0 for all x, x′ ∈
X and similarly for `. This means that the evaluation of the true CME (2.36)

µY |X=x(y) for all y ∈ Y and x ∈ X must be nonnegative. However, due to the

inversion of the regularized cross-covariance operator in the empirical CME (2.48)

or correspondingly the inversion of the gram matrix within the nonparametric

form of the empirical CME (2.64), the evaluation of empirical CMEs need not be

nonnegative. When we obtain such an empirical CME this immediately implies

that the empirical CME do not have a proper pre-image.

Nevertheless, while there is a long story behind the elegant theory of CMEs, their

empirical forms take relatively simple forms and require only standard linear al-

gebraic operations. In this sense, it is similar to GPRs and many other kernel

models, where training and prediction is straightforward to implement. Due to

the general nature of the way it is formulated, CMEs do not make strong or limit-

ing assumptions on the distributions involved, allowing for frameworks that require

such flexibility to be built upon it.

In the rest of the thesis, we will present methodologies to leverage the represen-

tational power of CMEs in three different settings – classification (chapter 3),

inference (chapter 4), and regression (chapter 5). We address the problem of hy-

perparameter learning and probabilistic inference in all three settings, as well as

further challenges that are relevant to each setting individually.



Chapter 3

Hyperparameter Learning for

Conditional Kernel Mean Embeddings

with Rademacher Complexity Bounds

Conditional kernel mean embeddings are nonparametric models that encode con-

ditional expectations in a reproducing kernel Hilbert space. While they provide

a flexible and powerful framework for probabilistic inference, their performance is

highly dependent on the choice of kernel and regularization hyperparameters. Nev-

ertheless, current hyperparameter tuning methods predominantly rely on expen-

sive cross validation or heuristics that is not optimized for the inference task. For

conditional kernel mean embeddings with categorical targets and arbitrary inputs,

we propose a hyperparameter learning framework based on Rademacher complex-

ity bounds to prevent overfitting by balancing data fit against model complexity.

Our approach only requires batch updates, allowing scalable kernel hyperparam-

eter tuning without invoking kernel approximations. Experiments demonstrate

that our learning framework outperforms competing methods, and can be fur-

ther extended to incorporate and learn deep neural network weights to improve

generalization.

3.1 Introduction

Conditional mean embeddings (CMEs) are attractive because they encode condi-

tional expectations in a RKHS, bypassing the need for a parametrized distribution

[Song et al., 2013]. They are part of a broader class of techniques known as kernel

mean embeddings, where nonparametric probabilistic inference can be carried out

entirely within the RKHS because difficult marginalization integrals become sim-

ple linear algebra [Muandet et al., 2017]. This very general framework is core to

modern kernel probabilistic methods, including kernel two-sample testing [Gretton

45
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et al., 2007], kernel Bayesian inference [Fukumizu et al., 2013], density estimation

[Kanagawa and Fukumizu, 2014, Song et al., 2008], component analysis [Muandet

et al., 2013], dimensionality reduction [Fukumizu et al., 2004], feature discovery

[Jitkrittum et al., 2016], and state space filtering [Kanagawa et al., 2016].

Nevertheless, like most kernel based models, their performance is highly depen-

dent on the hyperparameters chosen. For these models, the model selection process

usually begins by selecting a kernel, whose parameters become part of the model

hyperparameters, which may further include noise or regularization hyperparam-

eters. Given a set of hyperparameters, training is performed by solving either a

convex optimization problem, such as the case in support vector machines (SVMs)

[Schölkopf and Smola, 2002], or a set of linear equations, such as the case for Gaus-

sian process regressor (GPR) [Rasmussen and Williams, 2006], regularized least

squares classifiers (RLSCs) [Rifkin et al., 2003], and CMEs. Unfortunately, hyper-

parameter tuning is not straight forward, and often cross validation [Song et al.,

2013] or median length heuristics [Muandet et al., 2017] remain as the primary

approaches for this task. The former can be computationally expensive and sen-

sitive to the selection and number of validation sets, while the latter only applies

to hyperparameters with a length scale interpretation and makes no reference to

the conditional inference problem involved as it does not make use of targets.

One notable success story in this domain are GPs, which employ their marginal

likelihood as an objective for hyperparameter learning. The marginal likelihood

arises from its Bayesian formulation, and exhibits certain desirable properties –

in particular, the ability to automatically balance between data fit and model

complexity. On the other hand, CMEs are not necessarily Bayesian, and hence

they do not benefit from a natural marginal likelihood formulation, yet such a

balance is critical when generalizing the model beyond known examples.

Can we formulate a learning objective for CMEs to balance data fit and model

complexity, similar to the marginal likelihood of GPs? For CMEs with categori-

cal targets and arbitrary input, we present such a learning objective as our main

contribution. In particular, we: (1) derive a data-dependent model complexity

measure r(θ, λ) for a CME with hyperparameters (θ, λ) based on the Rademacher

complexity of a relevant class of CMEs, (2) propose a novel learning objective

based on this complexity measure to control generalization risk by balancing data

fit against model complexity, and (3) design a scalable hyperparameter learn-

ing algorithm under this objective using stochastic batch gradient updates. We

show that this learning objective produces CMEs that generalize better than that

learned from cross validation (CV), empirical risk minimization (ERM), and me-

dian length heuristic (MLH) on standard benchmarks, and apply such an algorithm

to incorporate and learn neural network weights to improve generalization.
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3.2 Related Work

3.2.1 Conditional Mean Embeddings

To construct a conditional mean operator UY |X corresponding to the distribution

PY |X , where X : Ω → X and Y : Ω → Y are measurable random variables, we

first choose a kernel k : X × X → R for the input space X and another kernel

l : Y × Y → R for the output space Y . These kernels k and l each describe

how similarity is measured within their respective domains X and Y , and are

symmetric positive definite such that they uniquely define the RKHS Hk and

Hl. The conditional mean operator UY |X is then the operator U : Hk → Hl for

which µY |X=x = Uk(x, ·), where µY |X=x := E[l(Y, ·)|X = x] is the CME [Song

et al., 2009]. In this sense, it sweeps out a family of CMEs µY |X=x in Hl, each

indexed by the input variable x ∈ X . We then define cross covariance operators

CY X := E[l(Y, ·) ⊗ k(X, ·)] : Hk → Hl and CXX := E[k(X, ·) ⊗ k(X, ·)] : Hk →
Hk. Alternatively, they can be seen as elements within the tensor product space

CY X ∈ Hl ⊗Hk and CXX ∈ Hk ⊗Hk.

Under the assumption that k(x, ·) ∈ image(CXX), it can be shown that UY |X =

CY XC
−1
XX . While this assumption is satisfied for finite domains X with a char-

acteristic kernel k, it does not necessarily hold when X is a continuous domain

[Fukumizu et al., 2004], which is the case for many classification problems. In this

case, CY XC
−1
XX becomes only an approximation to UY |X , and we instead regular-

ize the inversion and use UY |X = CY X(CXX + λI)−1, which also serves to avoid

overfitting [Song et al., 2013]. CMEs are useful for probabilistic inference since

conditional expectations of a function g ∈ Hl can be expressed as inner products

with the CME, E[g(Y )|X = x] = 〈µY |X=x, g〉, provided that E[g(Y )|X = ·] ∈ Hk

[Song et al., 2009, Theorem 4].

Furthermore, as both CY X and CXX are defined via expectations, we can estimate

them with their respective empirical means to derive a nonparametric estimate for

UY |X based on observations {xi, yi} ∈ X × Y , i ∈ Nn := {1, . . . , n},

ÛY |X = Ψ(K + nλI)−1ΦT , (3.1)

where Kij := k(xi, xj), Φ :=
[
φ(x1) . . . φ(xn)

]
, Ψ :=

[
ψ(y1) . . . ψ(yn)

]
,

φ(x) := k(x, ·), and ψ(y) := l(y, ·) [Song et al., 2013]. The empirical CME defined

by µ̂Y |X=x := ÛY |Xk(x, ·) then stochastically converges to the CME µY |X=x in the

RKHS norm at rate of Op((nλ)−
1
2 +λ

1
2 ), assuming that k(x, ·) ∈ image(CXX) [Song

et al., 2009, Theorem 6]. This allows us to approximate the conditional expectation

with 〈µ̂Y |X=x, g〉 instead, where g := {g(yi)}ni=1 and k(x) := {k(xi, x)}ni=1,

E[g(Y )|X = x] ≈ 〈µ̂Y |X=x, g〉 = gT (K + nλI)−1k(x). (3.2)
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3.2.2 Hyperparameter Learning

Hyperparameter learning for CMEs is particularly difficult compared to marginal

or joint embeddings, since the kernel k = kθ with hyperparameters θ ∈ Θ is to be

learned jointly with a regularization hyperparameter λ ∈ Λ = R+. Grünewälder

et al. [2012] proposed to hold out a validation set {k(xtj , ·), l(ytj , ·)}Jj=1 and mini-

mize 1
J

∑J
j=1

∥∥l(ytj , ·)−ÛY |Xk(xtj , ·)
∥∥2

Hl
where ÛY |X is estimated from the remain-

ing training set using (3.1). This could also be repeated over multiple folds for

cross validation. Song et al. [2013, p. 15] also uses this cross validation approach,

but adds regularization λ‖Û‖2
HS to the validation objective. Validation sets are

necessary for improving generalization to unseen examples. This is because the

CME is already the solution that minimizes the objective from Grünewälder et al.

[2012] over the operator space, so further optimization over the hyperparmeters

using the same training set would lead to overfitting. Moreover, the cross vali-

dation objective changes depending on the particular split and number of folds.

Additionally, by fitting a separate model for each fold during learning, they incur a

large computational cost of O(Jn3) for J folds, and become prohibitive with large

datasets. This spells a need for an alternative hyperparameter learning framework

using a different objective.

When cross validation is too expensive, length scales can be set by the median

heuristic [Muandet et al., 2017] via ` = mediani,j(‖xi − xj‖2) for many stationary

kernels. However, they cannot be used to set hyperparameters other than length

scales, such as λ. In the setting of two sample testing, Gretton et al. [2012] note

that they can possibly lead to poor performance. In the context of CMEs, they are

also unable to leverage supervision from labels. Flaxman et al. [2016] proposed a

Bayesian learning framework for marginal mean embeddings via inducing points,

although it is unclear how this can be extended to CMEs. Fukumizu et al. [2009]

also investigated the choice of kernel bandwidth for stationary kernels in the setting

of binary classification and two sample testing using maximum mean discrepancy

(MMD), but has yet to generalize to CMEs or multiclass settings.

3.2.3 Rademacher Complexity

Rademacher complexity [Bartlett and Mendelson, 2002] measures the expressive-

ness of a function class F by its ability to shatter, or fit, noise. They are data-

dependent measures, and are thus particularly well suited to learning tasks where

generalization is vital, since complexity penalties that are not data dependent

cannot be universally effective [Kearns et al., 1997]. The Rademacher complexity

[Bartlett and Mendelson, 2002, Definition 2] of a function class F is defined by

Rn(F ) := E[supf∈F ‖ 2
n

∑n
i=1 σif(Xi)‖], where {σi}ni=1 are iid Rademacher random

variables, taking values in {−1, 1} with equal probability, and {Xi}ni=1 are iid
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random variables from the same distribution PX . Since {σi}ni=1 are distributed in-

dependently without knowledge of f , the intuition is to interpret {σi}ni=1 as labels

that are simply noise. For a given set of inputs {Xi}ni=1, the term inside the norm

is high when the sign of f(Xi) matches the signs of σi averaged across i ∈ Nn,

meaning that f has managed to fit the noise well. We take this as the defining fea-

ture of what it means for a model f to be complex. The supremum then finds the

f within F that fits the noise the best, intuitively representing the most complex

f within F . The final expectation then averages this quantity across realizations

of {Xi}ni=1 from PX .

Rademacher complexities are usually applied in the context where classifiers are

trained by minimizing some empirical loss subject to a bounded Rademacher com-

plexity within the class of classifiers. In the context of multi-label learning, Yu

et al. [2014] used trace norm regularization to bound the Rademacher complexity,

achieving tight generalization bounds. Xu et al. [2016] extends the trace norm reg-

ularization approach by considering the local Rademacher complexity on a subset

of the predictor class, where they instead minimize the tail sum of the predictor

singular values. Local Rademacher complexity has also been employed for multi-

ple kernel learning [Cortes et al., 2013, Kloft and Blanchard, 2011] to learn convex

combinations of fixed kernels for SVMs. Similarly, Pontil and Maurer [2013] also

used trace norm regularization to bound the Rademacher complexity and minimize

the truncated hinge loss. Nevertheless, while Rademacher complexities have been

employed to restrict the function class considered for training weight parameters,

they have not been applied to learn kernel hyperparameters itself.

3.3 Multiclass Conditional Embeddings

We present a particular type of CMEs that are suitable for prediction tasks with

categorical targets. We show that for CMEs with categorical targets and arbi-

trary inputs, we can further infer conditional probabilities directly, and not just

conditional expectations. As there are no restrictions on the number of target

categories, we refer to these CMEs as multiclass conditional embeddings (MCEs).

Section 3.7 contains the proofs for theorems claimed in this section.

For categorical targets, the output label space is finite and discrete, taking values

only in Y = Nm := {1, . . . ,m}. Naturally, we choose the Kronecker delta kernel

δ : Nm ×Nm → {0, 1} as the output kernel l, where labels that are the same have

unit similarity and labels that are different have no similarity. That is, for all

pairs of labels yi, yj ∈ Y , δ(yi, yj) = 1 only if yi = yj and is 0 otherwise. As δ is

an integrally strictly positive definite kernel on Nm, it is therefore characteristic

[Sriperumbudur et al., 2010b, Theorem 7]. Therefore, by definition [Fukumizu

et al., 2004], δ uniquely defines a RKHS Hδ = span{δ(y, ·) : y ∈ Y}, which is
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the closure of the span of its kernel induced features [Xu and Zhang, 2009]. For

Y = Nm, this means that any g : Nm → R that is bounded on its discrete domain

Nm is in the RKHS of δ, because we can always write g =
∑m

y=1 g(y)δ(y, ·) ∈
span{δ(y, ·) : y ∈ Y} ⊆ Hδ. In particular, indicator functions on Nm are in Hδ,

since 1c(y) := 1{c}(y) = δ(c, y), so that 1c = δ(c, ·) are simply the canonical

features of Hδ. Such properties do not necessarily hold for continuous target

domains in general. For discrete target domains, this convenient property enables

consistent estimations of decision probabilities.

Let pc(x) := P[Y = c|X = x] be the decision probability function for class c ∈ Nm,

which is the probability of the class label Y being c when the example X is x.

Importantly, note that there are no restrictions on the input domain X as long as

a kernel k can be defined on it. For example, X could be the continuous Euclidean

space Rd, the space of images, or the space of strings. We begin by writing this

probability as an expectation of indicator functions,

pc(x) := P[Y = c|X = x] = E[1c(Y )|X = x]. (3.3)

With 1c ∈ Hδ, we let g = 1c in (3.2) and 1c := {1c(yi)}ni=1 to estimate the right

hand side of (3.3) by

p̂c(x) = fc(x) := 1Tc (K + nλI)−1k(x). (3.4)

Let Y :=
[
11 12 · · · 1m

]
∈ {0, 1}n×m be the one hot encoded labels of {yi}ni=1.

The vector of empirical decision probabilities over the classes c ∈ Nm is then

p̂(x) = f(x) := YT (K + nλI)−1k(x) ∈ Rm. (3.5)

Since U = ÛY |X (3.1) is the solution to a regularized least squares problem in

the RKHS from k(x, ·) ∈ Hk to l(y, ·) ∈ Hl [Grünewälder et al., 2012], CMEs are

essentially kernel ridge regressions (KRRs) with targets in the RKHS. In this case,

because Y = Nm is discrete, Hδ can be identified with Rm. As a result, the rows

of the MCE can also be seen as m KRRs [Friedman et al., 2001] on binary {0, 1}-
targets, where they all share the same input kernel k. Because they all share the

same kernel to form the MCE, we prove that the empirical decision probabilities

(3.4) do converge to the population decision probability.

Theorem 3.1 (Convergence of Empirical Decision Probability Function). Assum-

ing that k(x, ·) is in the image of CXX , the empirical decision probability function

p̂c : X → R (3.4) converges uniformly to the true decision probability pc : X → [0, 1]

(3.3) at a stochastic rate of at least Op((nλ)−
1
2 + λ

1
2 ) for all c ∈ Y = Nm.
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In particular, the assumption k(x, ·) ∈ image(CXX) is a statement on the input

kernel k, not the output kernel l, which is a Kronecker delta l = δ for MCEs.

It is worthwhile to note that this assumption is common for CMEs, and is often

relaxed through introducing the regularization hyperparameter λ (3.1) in practice

[Muandet et al., 2017, Song et al., 2013, 2009, p.74-75, Sec. 3 and 3.1 resp.].

Note that for finite n the probability estimates (3.4) may not necessarily lie in

the range [0, 1] nor form a normalized distribution for finite n. Nonetheless, the-

orem 3.1 guarantees that they approach one with increasing sample size. When

normalized distributions are required, clip-normalized estimates can be used,

p̃c(x) :=
max{p̂c(x), 0}∑m
j=1 max{p̂j(x), 0}

. (3.6)

This does not change the resulting prediction, since ŷ(x) = arg maxc∈Nm p̂c(x) =

arg maxc∈Nm p̃c(x). Theorem 3.1 also implies that eventually the effect of clip-

normalization vanishes, where p̃c(x) approaches to both p̂c(x) and thus pc(x) with

increasing sample sizes.

Importantly, this enables MCEs to be naturally applied to perform probabilistic

classification in multiclass settings with categorical targets. In contrast, in terms

of probabilistic classification, support vector classifiers (SVCs) do not output prob-

abilities and probabilistic extensions require difficult calibration, while Gaussian

process classifiers (GPCs) require posterior approximations. Furthermore, in terms

of the multiclass setting, multiclass extensions to SVCs and GPCs often employ

the one versus all (OVA) or one versus one (OVO) scheme [Aly, 2005], resulting

in multiple separately trained binary classifiers with no guarantees of coherence

between their outputs. Instead, training a single MCE is sufficient for producing

consistent multiclass probabilistic estimates.

Similar to RLSC, MCEs are solutions to a regularized least squares problem in a

RKHS [Grünewälder et al., 2012], resulting in a similar system of linear equations.

Nevertheless, RLSCs primarily differ in the way they handle the labels, in which

binary labels {−1, 1} appear directly in the squared loss instead of its kernel feature

δ(yi, ·) or, equivalently, its one hot encoded form yi. Consequently, multiclass

extensions for RLSC either require using the OVA scheme [Rifkin et al., 2003]

which suffers from computational and coherence issues, or alternatively require

minimizing the total loss across all binarized tasks for the overall least squares

problem [Pahikkala et al., 2012]. Although the latter attempts to link the classifiers

together through its loss, both approaches still produce separate classifiers for each

class. As a result, multiclass RLSC does not produce consistent estimates of class

probabilities akin to that of theorem 3.1 for MCEs.
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3.4 Information Entropy

Probabilistic classifiers such as the MCE allows us to quantify the uncertainty

of its predictions for any given example x ∈ X through the information entropy.

This is ideal for detecting the decision boundaries of the classifier. However, the

MCEs outputs decision probability estimates which may not necessarily lie in the

range [0, 1] nor form a normalized distribution for finite n. Consequently, we

present two main approaches for approximating the information entropy from the

classifier, with the latter taking advantage of RKHS properties directly.

The information entropy of the possible labels Y for a given example X = x is

h(x) := H[Y |X = x] = −
m∑
c=1

pc(x) log pc(x). (3.7)

The first approach is straightforward, involving simply computing the information

entropy with the clip normalized probabilities (3.6), at the query point x ∈ X ,

h̃(x) := −
m∑
c=1

p̃c(x) log p̃c(x). (3.8)

We call (3.8) the clip-normalized information entropy. Since p̃c(x) converges point-

wise to pc(x) with increasing data, h̃(x) also converges pointwise to h(x).

Just as decision probabilities can be expressed as an expectation of indicator func-

tions, information entropy can be expressed as expected information gain,

H[Y |X = x] = −
m∑
c=1

P[Y = c|X = x] log P[Y = c|X = x]

= E[− log P[Y |X = x]|X = x]

= E[ux(Y )|X = x],

(3.9)

where ux(y) := − log P[Y = y|X = x] is the information (in nats) we would gain

when we discover that example x actually has label y, under the true decision

probability P[Y = y|X = x]. Note that while P[Y = y|X = x] is a constant, we

employ the shorthand notation P[Y |X = x] for the random variable g(Y ) where

g(y) = P[Y = y|X = x]. If ux : Nm → R is in the RKHS Hδ, then we know that

this expectation can also be approximated by 〈µ̂Y |X=x, ux〉.

This forms the basis of our second approach. Assuming that P[Y = y|X = x] is

never exactly zero for all labels y ∈ Y and examples x ∈ X , then ux(y) is bounded

on its discrete domain Nm. We can thus write ux =
∑m

c=1− log P[Y = c|X = x]δ(c, ·)
which shows that ux is in the span of the canonical kernel features and is thus in
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the RKHS. Hence, similar to the case with decision probabilities, with ux ∈ Hδ

and ux := {ux(yi)}ni=1 we let g = ux in (3.2) and estimate h(x) by

〈µ̂Y |X=x, ux〉 = uTx (K + nλI)−1k(x). (3.10)

Unfortunately, ux is not known exactly, since P[Y = y|X = x] is not known exactly.

Instead, since p̂c(x) is a consistent estimate for P[Y = c|X = x] by theorem 3.7, we

propose to replace ux(y) with the information gain under p̂y(x) instead. However,

we cannot simply take the log of this estimator, as p̂y(x) may produce non-positive

estimates to the prediction probabilities. The straight forward way to mitigate this

problem is to clip p̂y(x) from the bottom by a very small number, before taking

the log. However, experiments show that this produces non-smooth estimates over

X and the degree of smoothness varies drastically between different choices of that

small number. Instead, in virtue of the fact that limp→0−p log p = 0 even though

limp→0− log p =∞, we simply define the information gain estimate ûx(y) as zero

if the empirical decision probability is non-positive,

ûx(y) :=

{
− log p̂y(x) if p̂y(x) > 0,

0 otherwise.
(3.11)

It remains to show that ûx ∈ Hδ. Indeed, the information gain estimate can be

written as ûx =
∑m

c=1 ûx(c)δ(c, ·) and thus ûx is in the span of the kernel canonical

features. We then arrive at the following estimate for h(x),

ĥ(x) := 〈µ̂Y |X=x, ûx〉 = ûTx (K + nλI)−1k(x), (3.12)

where ûx := {ûx(yi)}ni=1. Similar to the case with decision probabilities (3.3), the

information entropy estimate (3.12) is not guaranteed to be non-negative. How-

ever, in practice these negative values are close to zero. Furthermore, negative

estimated information entropy implies that the model is very confident about its

prediction, and it suffices to simply clip the entropy at zero if strict information

entropy is required. Since this estimator is now based on the inner product be-

tween the empirical CME and another empirically estimate function, instead of

between the empirical CME and a known function like the decision probability

estimate, it is not immediately clear that such an estimator converges. Neverthe-

less, intuition tells us that the inner product between two converging quantities

should converge. We proceed to show that this intuition is correct. The proof is

provided in section 3.7.

Theorem 3.2 (Convergence of Empirical Information Entropy Function). Assum-

ing that k(x, ·) is in the image of CXX , the empirical information entropy function

ĥ : X → R (3.12) converges pointwise to the true information entropy function

h : X → [0,∞) at a stochastic rate of at least Op((nλ)−
1
2 + λ

1
2 ).
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3.5 Hyperparameter Learning with Rademacher

Complexity Bounds

We now derive learning theoretic bounds that motivate and serve as the founda-

tions to our proposed hyperparameter learning algorithm. From here onwards, we

denote θ as the kernel hyperparameters of the kernel k = kθ. The hyperparameters

we are interested in learning are θ and λ.

We begin by defining a loss function as a measure for performance. For decision

functions of the form f : X → A = Rm whose entries are probability estimates, we

employ a modified cross entropy loss,

Lε(y, f(x)) := − log [yT f(x)]1ε = − log [fy(x)]1ε , (3.13)

to express risk, where we use the notation [ · ]1ε := min{max{ · , ε}, 1} for ε ∈ (0, 1).

It is worthwhile to point out that this choice only makes sense due to theorem 3.1,

as it allows us to interpret the outputs of the CME as asymptotic probability

estimates. Note that we employ the loss on the original probability estimates

(3.5), not the clip-normalized version (3.6). We employ this loss in virtue of

theorem 3.1, where we expect f(x) (3.5) to be approximations to the population

decision probabilities. In contrast, direct outputs from SVCs, GPCs, or RLSCs are

not consistent probability estimates and cannot take advantage of (3.13) easily.

However, simply minimizing the empirical loss 1
n

∑n
i=1 Lε(yi, fθ,λ(xi)) over the hy-

perparameters (θ, λ) could lead to an overfitted model. We therefore employ

Rademacher complexity bounds to control the model complexity of MCEs.

Let Θ and Λ be a space of kernel and regularization hyperparameters respectively.

We define the class of MCEs over these hyperparameter spaces by

Fn(Θ,Λ) := {fθ,λ(x) : θ ∈ Θ, λ ∈ Λ}. (3.14)

We denote W T
θ,λ ≡ Û

(θ,λ)
Y |X so that ‖Wθ,λ‖tr = ‖Û (θ,λ)

Y |X ‖HS to reflect the dependence

on (θ, λ) and also to emphasize the role it plays as the weights of the decision

function. We first restrict the space of hyperparameters by the norms of Wθ,λ and

kθ(x, x) to obtain an upper bound to the Rademacher complexity of Fn(Θ,Λ).

Theorem 3.3 (MCE Rademacher Complexity Bound). Suppose that the trace

norm ‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Further suppose that the

canonical feature map is bounded in RKHS norm ‖φθ(x)‖2
Hkθ

= kθ(x, x) ≤ α2,

α > 0, for all x ∈ X , θ ∈ Θ. For any set of training observations {xi, yi}ni=1, the

Rademacher complexity of the class of MCEs Fn(Θ,Λ) (3.14) is bounded by

Rn(Fn(Θ,Λ)) ≤ 2αρ. (3.15)
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Bartlett and Mendelson [2002] showed that the expected risk can be bounded

with high probability using the empirical risk and the Rademacher complexity

of the loss composed with the function class. For a Lipchitz loss, Ledoux and

Talagrand [2013] further showed that the latter quantity can be bounded using

the Rademacher complexity of the function class itself. We use these two results

to arrive at the following probabilistic upper bound to our expected loss.

Theorem 3.4 (MCE ε-Specific Expected Risk Bound). Assume the same assump-

tions as theorem 3.3. For any integer n ∈ N+, any ε ∈ (0, e−1), and any set of

training observations {xi, yi}ni=1, with probability of at least 1− β over iid samples

{Xi, Yi}ni=1 of length n from PXY , every f ∈ Fn(Θ,Λ) satisfies

E[Le−1(Y, f(X))] ≤ 1

n

n∑
i=1

Lε(Yi, f(Xi)) + 4e αρ+

√
8

n
log

2

β
. (3.16)

However, for hyperparameter learning, we would require a risk bound for specific

choice of hyperparameters, not just for a set of hyperparameters. For some θ̃ ∈ Θ

and λ̃ ∈ Λ, we construct a subset of hyperparameters Ξ(θ̃, λ̃) ⊆ Θ × Λ defined

by Ξ(θ̃, λ̃) := {(θ, λ) ∈ Θ × Λ : ‖Wθ,λ‖tr ≤ ‖Wθ̃,λ̃‖tr, supx∈X kθ(x, x) ≤ α2(θ̃) :=

supx∈X kθ̃(x, x)}. Clearly, this subset is non-empty, since (θ̃, λ̃) ∈ Ξ(θ̃, λ̃) is itself

an element of this subset. Thus, we can assert that ‖Wθ,λ‖tr ≤ ρ = ‖Wθ̃,λ̃‖tr

is bounded for all (θ, λ) ∈ Ξ(θ̃, λ̃), and that ‖φθ(x)‖2
Hkθ

= kθ(x, x) ≤ α2 =

supx∈X kθ̃(x, x) is bounded for all x ∈ X , (θ, λ) ∈ Ξ(θ̃, λ̃).

We can now choose some arbitrary θ̃ ∈ Θ, λ̃ ∈ Λ and apply theorem 3.4 with ρ =

‖Wθ̃,λ̃‖tr and α2 = supx∈X kθ̃(x, x) and by considering only the hyperparameters

(θ, λ) ∈ Ξ(θ̃, λ̃). The probabilistic statement (3.16) then only holds for (θ, λ) ∈
Ξ(θ̃, λ̃). In particular, since (θ̃, λ̃) ∈ Ξ(θ̃, λ̃), it holds for (θ, λ) = (θ̃, λ̃). Applying

this choice, the only hyperparameters that remain in the statement are (θ̃, λ̃). We

then replace these symbols with (θ, λ) again to avoid cluttered notation. Since

they were chosen arbitrarily from Θ× Λ, we arrive at our final result.

Theorem 3.5 (MCE Expected Risk Bound for Hyperparameters). For any integer

n ∈ N+ and any set of training observations {xi, yi}ni=1 used to define fθ,λ (3.5),

with probability 1 − β over iid samples {Xi, Yi}ni=1 of length n from PXY , every

θ ∈ Θ, λ ∈ Λ, and ε ∈ (0, e−1) satisfies

E[Le−1(Y, fθ,λ(X))] ≤ 1

n

n∑
i=1

Lε(Yi, fθ,λ(Xi)) + 4e r(θ, λ) +

√
8

n
log

2

β
, (3.17)

where r(θ, λ) :=
√

trace(V T
θ,λKθVθ,λ) supx∈X kθ(x, x) and Vθ,λ := (Kθ + nλI)−1Y.

In particular, r(θ, λ) is an upper bound to the Rademacher complexity of a rel-

evant class of MCEs based on the hyperparameters Ξ(θ, λ). We call r(θ, λ) the
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Algorithm 1 MCE Hyperparameter Learning with Stochastic Gradient Updates

1: Input: kernel family kθ : X × X → R, dataset {xi, yi}ni=1, initial kernel
hyperparameters θ0, initial regularization hyperparameters λ0, learning rate
η, cross entropy loss threshold ε, batch size nb

2: θ ← θ0, λ← λ0

3: repeat
4: Sample the next batch Ib ⊆ Nn s.t. |Ib| = nb
5: Y ← {δ(yi, c) : i ∈ Ib, c ∈ Nm} ∈ {0, 1}nb×m
6: Kθ ← {kθ(xi, xj) : i ∈ Ib, j ∈ Ib} ∈ Rnb×nb

7: Lθ,λ ← cholesky(Kθ + nbλInb) ∈ Rnb×nb

8: Vθ,λ ← LTθ,λ\(Lθ,λ\Y ) ∈ Rnb×m

9: Pθ,λ ← KθVθ,λ ∈ Rnb×m

10: r(θ, λ)← α(θ)
√

trace(V T
θ,λKθVθ,λ)

11: q(θ, λ)← 1
nb

∑nb
i=1 Lε((Y )i, (Pθ,λ)i) + 4e r(θ, λ)

12: (θ, λ)← GradientBasedUpdate(q, θ, λ; η)
13: until maximum iterations reached
14: Output: kernel hyperparameters θ, regularization λ

Rademacher complexity bound (RCB) and use it to measure the model com-

plexity of a MCE with hyperparameters (θ, λ). Since the training set itself is a

sample of length n drawn from PXY , the inequality (3.17) holds with probability

1− β when the random variables (Xi, Yi) are realized as the training observations

(xi, yi). Motivated by this, we employ this upper bound as the learning objective

for hyperparameter learning,

q(θ, λ) :=
1

n

n∑
i=1

Lε(yi, fθ,λ(xi)) + 4e r(θ, λ). (3.18)

Importantly, the first term is an empirical risk that measures data fit, and the

second term is the RCB that measures model complexity. Together, this learning

objective achieves a balance between data fit and model complexity, similar to the

corresponding property of a negative log marginal likelihood learning objective.

3.6 Scalable Hyperparameter Learning

In the big data domain where it becomes prohibitively expensive to compute the

full hyperparameter learning objective (3.18), we scale our approach by using only

a batch subset of the data to construct hyperparameter learning objective and

its gradients. This is possible due to interesting consequences of the statements

proved in theorem 3.5.



Kernel Hyperparameter Learning with Rademacher Complexity Bounds 57

3.6.1 Batch Stochastic Gradient Update

Since theorem 3.5 holds for any n ∈ N+ and any set of data {xi, yi}ni=1 from

PXY , the bound (3.17) also holds with high probability for a batch subset of

the training data. We therefore propose to use only a random batch subset of

the data to perform each gradient update. This enables scalable hyperparameter

learning through batch stochastic gradient updates, where each gradient update

stochastically improves a different probabilistic upper bound of the generalization

risk. Note that without theorem 3.5, it is not straightforward to simply apply

stochastic gradient updates to optimize q, since r depends on the dataset but is

not written in terms of a summation over the data. Furthermore, the batch size

cannot be too small, in order to keep the constant
√

8 log (2/β)/n relatively small.

We present this scalable hyperparameter learning approach via batch stochastic

gradient updates in algorithm 1, reducing the time complexity from O(n3) to

O(n3
b), where nb is the batch size. The Cholesky decomposition for the full training

set requires O(n3) time and is necessary only for inference, instead of once every

learning iteration. It can be further avoided by using random Fourier features

[Rahimi and Recht, 2008] or kernel herding [Chen et al., 2010] to approximate the

already learned MCE. All further inference takes O(n2) time, or potentially less

with approximation, using back substitution.

3.6.2 Batch Validation

While we simply instantiated (Xi, Yi) to be the training observations in theorem 3.5

to obtain (3.18), this does not have to be the case for batch updates. Instead, in

each learning iteration, we could further split the batch into two sub-batches – one

for training and one for validation. The training batch is used to form the MCE

fθ,λ and RCB r(θ, λ), while we evaluate the empirical risk on the validation batch,

q(V )(θ, λ) :=
1

n(V )

n(V )∑
i=1

Lε(y(V )
i , f

(T )
θ,λ (x

(V )
i )) + τ r(T )(θ, λ), (3.19)

where (T ) and (V ) denotes training and validation. Importantly, in contrast to

standard cross validation, not all data is required for each update due to the

presence of the RCB. Furthermore, although the multiplier on the RCB is 4e,

experiments show that generalization performance can improve if we use a smaller

multiplier τ < 4e, suggesting an upper bound tighter than (3.17) may exist. In

practice, these two extensions work well together. Intuitively, by introducing a

validation batch to measure empirical data fit, a smaller weight on the complexity

penalty is required.
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3.7 Convergence Theorems and Proofs

In this section we provide theorems and derivations that establish convergence

properties of MCEs. Most of the convergence results hold due to MCEs being

special cases of CMEs, whose empirical estimates are known to converge. This

section contains the proofs for theorems claimed in section 3.3 and section 3.4.

Suppose {Xi, Yi} ∼ PXY are iid for all i ∈ Nn, with Xi : Ω→ X and Yi : Ω→ Y .

We wish to estimate some target function f : X → R by f̂ : X → R empirically

with a dataset {Xi, Yi}ni=1 of size n ∈ N+. Since f̂ is empirically estimated, it is

a random function over the possible data observation events ω ∈ Ω. The aim is

to provide a sense of the stochastic convergence of f̂ to f by providing an upper

bound of their absolute pointwise difference |f̂(x) − f(x)|, and show that such

an upper bound converges to zero at some stochastic rate. Such an upper bound

is provided by the convergence properties of CMEs. In particular, the empirical

CME stochastically converges to the CME at rate Op((nλ)−
1
2 + λ

1
2 ), under the

assumption that k(x, ·) ∈ image(CXX) [Song et al., 2009, Theorem 6]. That is,

∀x ∈ X , ∀ε > 0, ∃Mε > 0 s.t.

P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
> Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε.

(3.20)

In practice, the assumption that k(x, ·) ∈ image(CXX) can be relaxed by replacing

UY |X = CY XC
−1
XX with UY |X = CY X(CXX + λI)−1 [Song et al., 2013]. This will

apply to all subsequent theorems in this section.

Theorem 3.6 (Pointwise and Uniform Convergence of Conditional Mean Em-

bedding Estimators). Suppose that k(x, ·) is in the image of CXX and that there

exists 0 ≤ γ(x) <∞ such that for some estimator function f̂ : X → R and target

function f : X → R,

|f̂(x)− f(x)| ≤ γ(x)
∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
,∀x ∈ X , (3.21)

then the estimator f̂ converges pointwise to the target f at a stochastic rate of at

least Op((nλ)−
1
2 + λ

1
2 ). Further, if γ(x) = γ is independent of x ∈ X , then this

convergence is uniform.

Proof. Suppose that there exists 0 ≤ γ(x) <∞ such that (3.21) is satisfied. That

is, the inequality (3.21) holds for all possible data observations {Xi, Yi}ni=1 where

Xi : Ω → X , Yi : Ω → Y for all i ∈ Nn. For any constant C, the implication

statement
∥∥µ̂Y |X=x − µY |X=x

∥∥
Hδ
≤ C =⇒ |f̂(x) − f(x)| ≤ Cγ(x) holds for all

possible observation events ω ∈ Ω. Writing this explicitly in event space translates
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this to a probability statement,

{ω ∈ Ω :
∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
≤ C} ⊆ {ω ∈ Ω : |f̂(x)− f(x)| ≤ Cγ(x)}

=⇒ P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
≤ C

]
≤ P

[
|f̂(x)− f(x)| ≤ Cγ(x)

]
.

(3.22)

Since we assume that k(x, ·) ∈ image(CXX), statement (3.20) is valid. By let-

ting C = Mε((nλ)−
1
2 + λ

1
2 ) in (3.22), we immediately have that the probability

inequality in statement (3.20) is also true if we replace ‖µ̂Y |X=x − µY |X=x‖ with

|f̂(x)− f(x)| and Mε with γ(x)Mε,

P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
> Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε

=⇒ 1− P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
≤Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε

=⇒ P
[∥∥µ̂Y |X=x − µY |X=x

∥∥
Hl
≤Mε

(
(nλ)−

1
2 + λ

1
2

)]
> 1− ε

=⇒ P
[
|f̂(x)− f(x)| ≤ γ(x)Mε

(
(nλ)−

1
2 + λ

1
2

)]
> 1− ε

=⇒ 1− P
[
|f̂(x)− f(x)| ≤ γ(x)Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε

=⇒ P
[
|f̂(x)− f(x)| > γ(x)Mε

(
(nλ)−

1
2 + λ

1
2

)]
< ε,

(3.23)

where we employed statement (3.22) between the third and fourth line for C =

Mε((nλ)−
1
2 + λ

1
2 ). Therefore, since Mε is arbitrary, define M̃ε(x) := γ(x)Mε so

that, with the above result, the statement (3.20) implies the following,

∀x ∈ X , ε > 0, ∃M̃ε(x) > 0 s.t. P
[∣∣f̂(x)− f(x)

∣∣ > M̃ε(x)
(

(nλ)−
1
2 + λ

1
2

)]
< ε.

(3.24)

In other words, the function f̂ stochastically converges pointwise to f with a rate

of at least Op((nλ)−
1
2 + λ

1
2 ). The convergence is pointwise as the constant M̃ε(x)

may be different for each point x ∈ X . If γ(x) = γ such that M̃ε(x) = M̃ε does

not depend on x ∈ X , then this stochastic convergence is uniform in its domain

X .

With theorem 3.6, we can now show the convergence of various estimators based

on the conditional mean embedding, as long as we can show that their estimator

error is upper bounded by a multiple of the conditional mean embedding error in

the RKHS norm. As such, we turn to the convergence of the empirical decision

probability function (3.4) below.

Theorem 3.7 (Convergence of Empirical Decision Probability Function). Assum-

ing that k(x, ·) is in the image of CXX , the empirical decision probability function

p̂c : X → R (3.4) converges uniformly to the true decision probability pc : X → [0, 1]

(3.3) at a stochastic rate of at least Op((nλ)−
1
2 + λ

1
2 ) for all c ∈ Y = Nm.
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Proof. Consider the pointwise absolute difference between the decision probability

and its empirical estimate,

|p̂c(x)− pc(x)| = |〈µ̂Y |X=x, 1c〉 − 〈µY |X=x, 1c〉|
= |〈µ̂Y |X=x − µY |X=x, 1c〉|
≤
∥∥µ̂Y |X=x − µY |X=x

∥∥
Hδ

∥∥1c
∥∥
Hδ
,

(3.25)

where the last inequality follows from the Cauchy Schwarz inequality in a Hilbert

space.

Since 1c = δ(c, ·) and using the fact that δ is a reproducing kernel, we have that

for all c ∈ Y = Nm.∥∥1c
∥∥2

Hδ
= 〈1c, 1c〉 = 〈δ(c, ·), δ(c, ·)〉 = δ(c, c) = 1. (3.26)

Therefore, by theorem 3.6 with γ(x) = 1 independent of x ∈ X , p̂c converges

uniformly to pc at a stochastic rate of at least Op((nλ)−
1
2 + λ

1
2 ) for all c ∈ Y =

Nm.

The above proof is for uniform convergence over all x ∈ X at the stochastic rate of

at least Op((nλ)−
1
2 +λ

1
2 ). Intuitively, however, for stationary zero-centered kernels

like the Gaussian kernel, the convergence rate may be higher at regions of high

data density, since the kernel effects, being centered around the training data, are

stronger at these regions. The worse case convergence rate described here in the

theorem would be a tight lower bound for regions in X with lower data density,

where the kernel effects have decayed and most empirical probabilities are smaller

and further from summing up to one.

Because the label space Y = Nm is discrete and finite, bounded functions g ∈ Hδ in

the RKHS are equivalent to their vector representations g := {g(c)}mc=1, because

one can always write g =
∑m

c=1 g(c)δ(c, ·). In other words, there is an isomorphism

between Hδ and Rm. A convenient consequence is that inner products in the RKHS

are simply the usual dot products in a Euclidean space, since

〈g1, g2〉Hδ =

〈 m∑
c=1

g1(c)δ(c, ·),
m∑
c′=1

g2(c′)δ(c′, ·)
〉
Hδ

=
m∑
c=1

m∑
c′=1

g1(c)g2(c′)〈δ(c, ·), δ(c′, ·)〉Hδ

=
m∑
c=1

g1(c)g2(c)

= g1 · g2.

(3.27)
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Consequently, the RKHS norm for bounded functions g ∈ Hδ is simply the `2-norm

of its vector representation g,

‖g‖Hδ = ‖g‖`2 . (3.28)

A special and convenient result that arises due to this discrete and finite label

space is that the decision probabilities and its empirical estimate are simply the

conditional mean embeddings and its empirical estimate.

Lemma 3.1 (Decision Probabilities are Conditional Mean Embeddings). The de-

cision probability for class c ∈ Nm given an example x ∈ X is the conditional mean

embedding with l = δ conditioned at example x evaluated at label c,

pc(x) := P[Y = c|X = x] = µY |X=x(c). (3.29)

Therefore, p(x) ≡ µY |X=x.

Proof. Since indicator functions are the canonical features of the label RKHS Hδ,

we employ the fact that expectations of indicator functions are probabilities to

prove this claim,

µY |X=x(c) :=E[l(Y, c)|X = x] = E[δ(Y, c)|X = x]

=E[1c(Y )|X = x] = P[Y ∈ {c}|X = x]

=P[Y = c|X = x] =: pc(x).

(3.30)

Lemma 3.2 (Empirical Decision Probabilities are Empirical Conditional Mean

Embeddings). The empirical decision probability (3.4) for class c ∈ Nm given an

example x ∈ X is the empirical conditional mean embedding with l = δ conditioned

at example x evaluated at label c,

p̂c(x) = µ̂Y |X=x(c). (3.31)

Therefore, p̂(x) ≡ µ̂Y |X=x.

Proof. Let the canonical feature maps of X and Y be φ(x) = k(x, ·) and ψ(y) =

l(y, ·) = δ(y, ·), then the empirical conditional mean embedding is defined by

µ̂Y |X=x := ÛY |Xφ(x). (3.32)
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By the reproducing property, the evaluation of µ̂Y |X=x ∈ Hl is given by a dot

product,
µ̂Y |X=x(c) = 〈l(c, ·), µ̂Y |X=x〉

= 〈ψ(c), µ̂Y |X=x〉
= ψ(c)T µ̂Y |X=x

= ψ(c)T ÛY |Xφ(x)

= ψ(c)TΨ(K + nλI)−1ΦTφ(x)

= lTc (K + nλI)−1k(x),

(3.33)

where lc := {l(yi, c)}ni=1 and kx := {k(xi, x)}ni=1. While the notation lc is usually

avoided due do its similarity to 1c, in this context they happen to represent equal

quantities,

lc := {l(yi, c)}ni=1 = {δ(yi, c)}ni=1 = {1c(yi)}ni=1 =: 1c. (3.34)

The claim then immediately follows by the definition of our decision probability

estimator,

µ̂Y |X=x(c) = 1Tc (K + nλI)−1k(x) =: p̂c(x). (3.35)

Lemma 3.2 shows that the decision function f(x) (3.5) of a MCE is no more than

the empirical conditional mean embedding estimated from the data.

Since we have identified the equivalence of decision probabilities and the condi-

tional mean embedding, we can now also show that the empirical decision proba-

bility vector also converges to the true decision probability vector.

Lemma 3.3 (Uniform Convergence of Empirical Decision Probability Vector

Function in `1 and `2). Assuming that k(x, ·) is in the image of CXX , the em-

pirical decision probability vector function p̂ : X → Rm (3.5) converges uniformly

to the true decision probability vector function p : X → [0, 1]m in the `1-norm and

`2-norm, where p(x) := {pc(x)}mc=1, at a stochastic rate of at least Op((nλ)−
1
2 +λ

1
2 )

for all c ∈ Y = Nm.

Proof. For convergence in `1, we simply extend theorem 3.7, which proved that

each entry of p̂(x) converges pointwise uniformly at a rate of Op((nλ)−
1
2 + λ

1
2 )

to the corresponding entry of p(x). Since each entry converges stochastically at

a rate of Op((nλ)−
1
2 + λ

1
2 ), then so does the entire vector. More formally, from
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(3.25) and (3.26), the `1-norm of the difference can be bounded,

‖p̂(x)− p(x)‖`1 :=
m∑
c=1

|p̂c(x)− pc(x)|

≤
m∑
c=1

∥∥µ̂Y |X=x − µY |X=x

∥∥
Hδ

=m
∥∥µ̂Y |X=x − µY |X=x

∥∥
Hδ
.

(3.36)

Therefore, by theorem 3.6 with γ(x) = m independent of x ∈ X , we have uniform

convergence in `1 where we replace all instances of |f̂(x) − f(x)| in the proof of

theorem 3.6 with ‖p̂(x)− p(x)‖`1 .

For convergence in `2, we show that the `2-norm of the difference between the true

and empirical decision probability vector functions is the same as the RKHS norm

of the difference between the true and empirical conditional mean embedding,

which converges to zero at a stochastic rate of at least Op((nλ)−
1
2 + λ

1
2 ) for all

x ∈ X and c ∈ Y = Nm by (3.20). To this end, we use lemma 3.1 and lemma 3.2

and write
‖p̂(x)− p(x)‖`2 = ‖{p̂c(x)}mc=1 − {pc(x)}mc=1‖`2

= ‖{p̂c(x)− pc(x)}mc=1‖`2
= ‖{µ̂Y |X=x(c)− µY |X=x(c)}mc=1‖`2
= ‖µ̂Y |X=x − µY |X=x‖`2
= ‖µ̂Y |X=x − µY |X=x‖Hδ ,

(3.37)

where the last equality comes from (3.28) and the fact that the empirical and

true conditional mean embeddings are bounded functions in the RKHS. Again, by

theorem 3.6 with γ(x) = 1 independent of x ∈ X , we have uniform convergence in

`2.

Finally, since the estimated decision probabilities converge, the estimated infor-

mation entropy also converges.

Theorem 3.8 (Convergence of Empirical Information Entropy Function). Assum-

ing that k(x, ·) is in the image of CXX , the empirical information entropy function

ĥ : X → R (3.12) converges pointwise to the true information entropy function

h : X → [0,∞) at a stochastic rate of at least Op((nλ)−
1
2 + λ

1
2 ).

Proof. Since we are interested in the asymptotic properties of our estimators when

n → ∞, and we have proved that the empirical decision probabilities converges

to the true probabilities (theorem 3.7), the condition p̂c(x) > 0 holds for large n

such that we simply have ûx(c) = − log p̂c(x). That is, the effects of clipping for

the information estimate (3.11) vanishes.
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Consider the pointwise absolute difference between the empirical and true infor-

mation entropy,

|ĥ(x)− h(x)| = |〈µ̂Y |X=x, ûx〉Hδ − 〈µY |X=x, ux〉Hδ |
= |〈µ̂Y |X=x, ûx〉Hδ − 〈µ̂Y |X=x, ux〉Hδ

+ 〈µ̂Y |X=x, ux〉Hδ − 〈µY |X=x, ux〉Hδ |
≤ |〈µ̂Y |X=x, ûx〉Hδ − 〈µ̂Y |X=x, ux〉Hδ |

+ |〈µ̂Y |X=x, ux〉Hδ − 〈µY |X=x, ux〉Hδ |
= |〈µ̂Y |X=x, ûx − ux〉Hδ |+ |〈µ̂Y |X=x − µY |X=x, ux〉Hδ |
≤ ‖µ̂Y |X=x‖Hδ‖ûx − ux‖Hδ + ‖µ̂Y |X=x − µY |X=x‖Hδ‖ux‖Hδ ,

(3.38)

where to obtain the inequalities we used the triangle inequality and Cauchy Schwarz

inequality in a Hilbert space respectively. Since the kernel l = δ is bounded, so is

µ̂Y |X=x(c) =
∑n

i=1wiδ(yi, c) for some embedding weights wi and all c ∈ Nm, and

thus its RKHS norm is finite for all n ∈ Nn. Similarly, assuming that pc(x) is never

exactly zero, ux(c) is also finite for all c ∈ Nm and thus so is its RKHS norm. We

already know that ‖µ̂Y |X=x − µY |X=x‖Hδ stochastically converges to zero at the

rate Op((nλ)−
1
2 +λ

1
2 ) (3.20). Thus, it remains to bound ‖ûx−ux‖Hδ by a multiple

of ‖µ̂Y |X=x − µY |X=x‖Hδ .

To this end, we first use lemma 3.1 and lemma 3.2 and to express the theoretical

and empirical information as the negative log of the embedding, so that it is

explicitly written as a function of c ∈ Y in Hδ indexed by x ∈ X ,

ux(c) = − log pc(x) = − log µY |X=x(c),

ûx(c) = − log p̂c(x) = − log µ̂Y |X=x(c).
(3.39)

Since log is a concave function, we have the property that log a− log b ≤ 1
b
(a− b).

This allows us to bound |ûx(c)− ux(c)| by |µ̂Y |X=x(c)− µY |X=x(c)| for all c ∈ Nm,

|ûx(c)− ux(c)| = | log µ̂Y |X=x(c)− log µY |X=x(c)|

≤ 1

|µY |X=x(c)|
|µ̂Y |X=x(c)− µY |X=x(c)|

≤ αx|µ̂Y |X=x(c)− µY |X=x(c)|,

(3.40)

where we define αx := maxc∈Nm
1

|µY |X=x(c)| , which is well defined as the conditional

mean embedding is bounded. Since the RKHS norm of bounded functions in Hδ
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is simply the `2-norm of their vector representations (3.28), we have

‖ûx − ux‖2
Hδ = ‖ûx − ux‖2

`2

=
m∑
c=1

|ûx(c)− ux(c)|2

≤
m∑
c=1

α2
x|µ̂Y |X=x(c)− µY |X=x(c)|2

≤ α2
x

m∑
c=1

|µ̂Y |X=x(c)− µY |X=x(c)|2

≤ α2
x‖µ̂Y |X=x − µY |X=x‖2

`2

≤ α2
x‖µ̂Y |X=x − µY |X=x‖2

Hδ .

(3.41)

Therefore, ‖ûx − ux‖Hδ ≤ αx‖µ̂Y |X=x − µY |X=x‖Hδ , and (3.38) becomes

|ĥ(x)− h(x)| ≤ ‖µ̂Y |X=x‖Hδ‖ûx − ux‖Hδ + ‖µ̂Y |X=x − µY |X=x‖Hδ‖ux‖Hδ
= αx‖µ̂Y |X=x‖Hδ‖µ̂Y |X=x − µY |X=x‖Hδ

+ ‖µ̂Y |X=x − µY |X=x‖Hδ‖ux‖Hδ
= (αx‖µ̂Y |X=x‖Hδ + ‖ux‖Hδ)‖µ̂Y |X=x − µY |X=x‖Hδ .

(3.42)

Hence, with γ(x) = αx‖µ̂Y |X=x‖Hδ +‖ux‖Hδ , theorem 3.6 implies that ĥ converges

pointwise to h at a stochastic rate of at least Op((nλ)−
1
2 + λ

1
2 ).

3.8 Learning Theoretic Bounds and Proofs

In this section we derive RCBs for MCEs, and show that it can be used in conjunc-

tion with cross entropy loss to bound the expected risk with high probability. This

section contains the proofs for theorems claimed in section 3.5, as well as detailed

discussions on how the theorems and proofs were motivated and constructed.

3.8.1 Rademacher Complexity Bounds

Suppose a set of training data {xi, yi}ni=1 is drawn from PXY in an iid fashion. We

denote the one hot encoded target labels of {yi}ni=1 by yi := {1c(yi)}mc=1 ∈ {0, 1}m

and Y :=
[
y1 y2 · · · yn

]T ∈ {0, 1}n×m. Similarly, let y ∈ {0, 1}m denote the

one hot encoded target labels for a generic label y ∈ Y . Let kθ : X × X → [0,∞)

be a family of positive definite kernels indexed by θ ∈ Θ. As before, we define the

shorthand notation for the gram matrices Kθ := {kθ(xi, xj) : i ∈ Nn, j ∈ Nn} and
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kθ(x) := {kθ(xi, x) : i ∈ Nn}, and λ denotes the regularization hyperparameter of

the conditional mean embedding (3.1). The MCE has a predictor form p̂(x) =

fθ,λ(x) (3.5) defined by

fθ,λ(x) := YT (Kθ + nλI)−1kθ(x), (3.43)

where each entry of the predictor fθ,λ(x) is the decision probability estimate for

pc(x). This defines the function class of the predictor over the kernel family

and a set of regularization hyperparameters for any set of training observations

{xi, yi}ni=1,

Fn(Θ,Λ) := {fθ,λ(x) : θ ∈ Θ, λ ∈ Λ}. (3.44)

The predictor form (3.43) is linear in the reproducing kernel Hilbert space Hkθ

induced by kθ in the sense that

fθ,λ(x) := W T
θ,λφθ(x),

Wθ,λ := Φθ(Kθ + nλI)−1Y,
(3.45)

where we decompose kθ(x) = ΦT
θ φθ(x) by the reproducing property. By lemma 3.2,

fθ,λ(x) = p̂θ,λ(x) = µ̂
(θ,λ)
Y |X=x = Û (θ,λ)

Y |X φθ(x). Therefore, we have that Û (θ,λ)
Y |X ≡ W T

θ,λ.

Throughout this paper, inner products are defined in the Hilbert-Schmidt sense,

which induces the Hilbert-Schmidt norm ‖·‖HS and generalises the Frobenius inner

product with induced norm ‖ · ‖tr for finite dimensional operators. Nevertheless,

while they refer to the same quantity, we will use the standard notations ‖Û θ,λY |X‖HS
as per the literature in Hilbert space embeddings and ‖Wθ,λ‖tr as per the literature

for linear classifiers.

Theorem 3.9 (MCE Rademacher Complexity Bound). Suppose that the trace

norm ‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Further suppose that the

canonical feature map is bounded in RKHS norm ‖φθ(x)‖2
Hkθ

= kθ(x, x) ≤ α2,

α > 0, for all x ∈ X , θ ∈ Θ. For any set of training observations {xi, yi}ni=1,

the Rademacher complexity of the class of MCEs Fn(Θ,Λ) (3.44) defined over

θ ∈ Θ, λ ∈ Λ is bounded by

Rn(Fn(Θ,Λ)) ≤ 2αρ. (3.46)

Proof. The Rademacher complexity [Bartlett and Mendelson, 2002, Definition 2]

of the function class Fn(Θ,Λ) is

Rn(Fn(Θ,Λ)) :=E

[
sup

θ∈Θ,λ∈Λ

∥∥∥ 2

n

n∑
i=1

σifθ,λ(Xi)
∥∥∥]

=
2

n
E

[
sup

θ∈Θ,λ∈Λ

∥∥∥ n∑
i=1

σifθ,λ(Xi)
∥∥∥], (3.47)
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where σi are iid Rademacher random variables, taking values in {−1, 1} with equal

probability, and Xi are iid random variables from the same distribution PX as our

training data. We further define σ := {σi}ni=1.

We first bound the term inside the supremum using the Cauchy Schwarz inequality,∥∥∥ n∑
i=1

σifθ,λ(Xi)
∥∥∥ =

∥∥∥ n∑
i=1

σiW
T
θ,λφθ(Xi)

∥∥∥
=
∥∥∥W T

θ,λΦθσ
∥∥∥

≤ ‖Wθ,λ‖tr‖‖Φθσ‖
≤ ‖Wθ,λ‖tr‖‖ΦT

θ ‖tr‖σ‖
= ‖Wθ,λ‖tr‖‖Φθ‖tr‖σ‖,

(3.48)

where we define the random operator Φθ :=
[
φ(X1) φ(X2) · · · φ(Xn)

]
. Note

that this is distinct from Φθ, whose columns are the canonical RKHS features

at the training observations and is not random. Now, random or not, entries of

σ := {σi}ni=1 are either −1 or 1, so its norm is simply ‖σ‖ =
√
n. We can then

also compute the trace norm of the other random component Φθ,

‖Φθ‖tr :=
√

trace(ΦT
θ Φθ)

=
√

trace(Kθ)

=

√√√√ n∑
i=1

kθ(Xi, Xi)

=

√√√√ n∑
i=1

α2

=
√
nα2

=
√
nα,

(3.49)

where the inequality comes from the assertion that kθ(x, x) ≤ α2 for all x ∈ X , θ ∈
Θ. This bounds all the random components in the expectation by a constant, so

that later the expectation can vanish.
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Using the assertion that ‖Wθ,λ‖tr ≤ ρ for all θ ∈ Θ, λ ∈ Λ, we can now bound the

Rademacher complexity,

Rn(Fn(Θ,Λ)) =
2

n
E

[
sup

θ∈Θ,λ∈Λ

∥∥∥ n∑
i=1

σifθ,λ(Xi)
∥∥∥]

≤ 2

n
E

[
sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr‖Φθ‖tr‖σ‖

]
=

2

n

√
nE

[
sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr‖Φθ‖tr

]
≤ 2

n

√
n
√
nαE

[
sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr

]
≤ 2αE

[
sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr

]
= 2α sup

θ∈Θ,λ∈Λ
‖Wθ,λ‖tr

≤ 2αρ.

(3.50)

Theorem 3.9 provides a generic Rademacher complexity bound for any type of

MCE with a bounded positive definite kernel and bounded trace norm. One of

the most widely used kernels in practice are the family of stationary kernels. We

provide a more specific bound for the case of stationary kernels below.

Corollary 3.1 (Rademacher Complexity Bound for Stationary Kernels). Suppose

that the trace norm ‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Suppose that kθ
is a family of positive definite stationary kernels. That is, kθ(x, x

′) = k̃θ(‖x− x′‖)
for some real-valued function k̃ : [0,∞) → [0,∞). Select θ̃ ∈ Θ and define Θ(θ̃)

such that kθ(0, 0) ≤ kθ̃(0, 0) for all θ ∈ Θ(θ̃). For any θ̃ ∈ Θ and set of training

observations {xi, yi}ni=1, the Rademacher complexity of the resulting class of MCEs

Fn(Θ(θ̃),Λ) defined over θ ∈ Θ(θ̃), λ ∈ Λ is bounded by

Rn(Fn(Θ(θ̃),Λ)) ≤ 2ρ
√
kθ̃(0, 0). (3.51)

Proof. Observe that kθ̃(0, 0) is an upper bound for kθ(x, x) for all x ∈ X and

θ ∈ Θ,

kθ(x, x) = k̃θ(‖x− x‖) = k̃θ(‖0‖) = kθ(0, 0) ≤ kθ̃(0, 0). (3.52)

We simply choose α2 = kθ̃(0, 0) in theorem 3.9.

Corollary 3.1 motivates the choice α2(θ) = kθ(0, 0) = σ2
f for stationary radial basis

type kernels such as the Gaussian or Matérn kernels, where σf is the sensitivity
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[Rasmussen and Williams, 2006] of the stationary kernel, which we employ in our

learning algorithm when the kernel is stationary.

3.8.2 Expected Risk Bounds

In order to quantify the performance of the MCE, we specify a loss function

L : Y × A → [0,∞), where L(y, f(x)) measures the loss of a decision function

f : X → A on a paired example x ∈ X and label y ∈ Y . In the MCE context, the

decision function is fθ,λ : X → Rm, with A = Rm and Y = Nm. The loss function

is to capture the desire for yT fθ,λ(x) = f
(θ,λ)
y (x) to be high for all likely test points

x ∈ X and y ∈ Y .

A suitable choice of the loss function in the probabilistic multiclass classification

context is the cross entropy loss,

L(y, f(x)) := − log yT f(x) = − log fy(x), (3.53)

where f(x) are the inferred decision probability estimates of each class for the

example x ∈ X . Since logarithms explode at zero, in practice the probability

estimate is often clipped from below at a predetermined threshold ε ∈ (0, 1). Fur-

thermore, it is also convenient to clip the probability estimate from above at one to

avoid negative losses. Consequently, with the notation [ · ]1ε := min{max{ · , ε}, 1},
we define the effective cross entropy loss as

Lε(y, f(x)) := − log [yT f(x)]1ε = − log [fy(x)]1ε . (3.54)

In this way, our cross entropy loss (3.54) is both bounded and positive. In our

subsequent analysis, we require that our loss function has an image in [0, 1]. To

do this, we simply rescale the loss function by dividing it by its largest value,

L̄ε(y, f(x)) :=
1

Mε

Lε(y, f(x)) = − 1

Mε

log [fy(x)]1ε ,

Mε := − log ε.

(3.55)

We will refer to (3.55) as the normalized cross entropy loss. We then further define

the centered normalized cross entropy loss,

L̃ε(y, f(x)) := L̄ε(y, f(x))− L̄ε(y,0) = − 1

Mε

log [fy(x)]1ε − 1. (3.56)

With the normalized cross entropy loss (3.55) as our loss function, we now employ

Theorem 8 of Bartlett and Mendelson [2002] for this loss and provide a bound for

the expected normalized cross entropy loss for an unseen test example.
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Lemma 3.4 (Expected Risk Bound). For any integer n ∈ N+ and any set of

training observations {xi, yi}ni=1, with probability 1−β over iid samples {Xi, Yi}ni=1

of length n from PXY , every f ∈ Fn(Θ,Λ) satisfies

1

Mε

E[Lε(Y, f(X))] ≤ 1

nMε

n∑
i=1

Lε(Yi, f(Xi)) +Rn(L̃ε ◦ Fn(Θ,Λ)) +

√
8

n
log

2

β
.

(3.57)

Proof. Since L̄ε : Y×A → [0, 1] has a unit range and dominates itself, L̄ε(y, f(x)) ≤
L̄ε(y, f(x)), the result follows directly from Theorem 8 of Bartlett and Mendelson

[2002]. We then use the definition (3.55) for the normalized cross entropy loss.

Equivalently, by definition (3.44), this result holds for f = fθ,λ(x) for every θ ∈
Θ, λ ∈ Λ. The bound (3.57) involves the Rademacher complexityRn(L̃ε◦Fn(Θ,Λ))

of the centered normalized cross entropy loss applied onto the class of functions

Fn(Θ,Λ), and not just the Rademacher complexity Rn(Fn(Θ,Λ)) of the class of

functions Fn(Θ,Λ) itself. In theorem 3.9, we have bounded the latter. We now

proceed to bound the former with the latter (3.46), so that the upper bound in

lemma 3.4 can be written in terms of the latter.

Lemma 3.5 (Rademacher Complexity Bound with Cross Entropy Loss). For any

integer n ∈ N+ and any set of training observations {xi, yi}ni=1, the Rademacher

complexity of the class of cross entropy loss applied onto the MCE is bounded by

Rn(L̃ε ◦ Fn(Θ,Λ)) ≤ 2
1

ε log 1
ε

Rn(Fn(Θ,Λ)), (3.58)

where L̃ε ◦ Fn(Θ,Λ) := {(x, y) 7→ L̃ε(y, fθ,λ(x)) : θ ∈ Θ, λ ∈ Λ}.

Proof. Let ψ̃(z) := − 1
Mε

log [z]1ε−1 so that ψ̃ : R→ R satisfies ψ̃(0) = 0. Then, the

centered normalized cross entropy loss can be written as L̃ε(y, f(x)) = ψ̃(fy(x)). In

particular, ψ̃(z) is piecewise differentiable. We proceed to show that ψ̃ is Lipschitz

by showing that the supremum of its absolute derivative over all piecewise regions

is finite, and thus infer its Lipschitz constant.

The real-valued function ψ̃ can be split into three piecewise regions over the real

domain,

ψ̃(z) =


0, z ∈ (−∞, ε],
− 1
Mε

log z − 1, z ∈ (ε, 1),

−1, z ∈ [1,∞).

(3.59)
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The derivative over the regions z ∈ (−∞, ε] and z ∈ [1,∞) is thus 0 and the local

Lipschitz constant over that region is thus 0. We then focus on the other region,

sup
z∈(ε,1)

|ψ̃′(z)| = sup
z∈(ε,1)

∣∣∣∣− 1

zMε

∣∣∣∣ = sup
z∈(ε,1)

1

zMε

=
1

εMε

=
1

ε log 1
ε

. (3.60)

Thus, ψ̃ is Lipschitz with a Lipschitz constant of Lψ̃ = 1
ε log 1

ε

.

For a given general loss function L, Ledoux and Talagrand [2013, Corollary 3.17]

proved that if there exists a Lipschitz real-valued function ψ : R → R, ψ(0) = 0,

with constant Lψ such that L(y, f(x)) = ψ(fy(x)), then Rn(L ◦ F ) ≤ 2LψRn(F )

for any class of functions F . This result is also described in Bartlett and Mendelson

[2002, Theorem 12.4].

Applying this result to our loss function with L = L̃ε with ψ = ψ̃ and F =

Fn(Θ,Λ), we have Rn(L̃ε ◦Fn(Θ,Λ)) ≤ 2Lψ̃Rn(Fn(Θ,Λ)), which proves the claim.

The bound (3.58) in lemma 3.5 will be the bridge that relates the expected cross

entropy loss over our function class to the Rademacher complexity of our function

class. We now proceed to state the main theorem which forms the backbone of

our learning algorithm for the MCE.

Lemma 3.6 (MCE ε-General Expected Risk Bound). Suppose that the trace norm

‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Further suppose that the canonical

feature map ‖φθ(x)‖2
Hkθ

= kθ(x, x) ≤ α2, α > 0, is bounded in RKHS norm for

all x ∈ X , θ ∈ Θ. For any integer n ∈ N+ and any set of training observations

{xi, yi}ni=1, with probability of at least 1− β over iid samples {Xi, Yi}ni=1 of length

n from PXY , every f ∈ Fn(Θ,Λ) satisfies

1

Mε

E[Lε(Y, f(X))] ≤ 1

nMε

n∑
i=1

Lε(Yi, f(Xi)) + 4
1

ε log 1
ε

αρ+

√
8

n
log

2

β
, (3.61)

for any ε ∈ (0, 1). Equivalently, the bound (3.61) holds for f = fθ,λ(x) for every

θ ∈ Θ, λ ∈ Λ.

Proof. From theorem 3.9, we have Rn(Fn(Θ,Λ)) ≤ 2αρ. Further, from lemma 3.5,

we have Rn(L̃ε ◦ Fn(Θ,Λ)) ≤ 2 1
ε log 1

ε

Rn(Fn(Θ,Λ)). These are both deterministic

inequalities, leading to Rn(L̃ε◦Fn(Θ,Λ)) ≤ 4 1
ε log 1

ε

αρ. We then apply this inequal-

ity to lemma 3.4, which proves the claim.

Similar to many learning theoretic bounds, the expected risk bound (3.61) is com-

posed of three qualitatively different terms. The first term is a training loss or
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data fit term, which is a measure of how poorly the decision function f is per-

forming on a given training dataset. The second term is a model complexity or

regularization term, which measures how complicated the model is. In this case,

the model complexity is measured by the Rademacher complexity, which captures

the expressiveness of the function class by quantifying how well the function class

is able to shatter noise. The third term is a statistical constant which plays no

specific role to the function class.

We will eventually be minimizing the first two terms over some class of functions

f ∈ Fn(Θ,Λ) with some approach, as a proxy to minimizing the actual expected

risk. It would be fruitful to develop an intuition for the tightness of the bound

from the contributions of the training loss term and the model complexity term.

Since, like the expected loss, the training loss term is always in the unit range

[0, 1], we focus on understanding the tightness of the bound contributed from the

complexity term.

Consider a clipped cross entropy loss with either a very small clipping factor ε ≈ 0,

or a very large clipping factor ε ≈ 1. In these scenarios, ε log 1
ε

would be very small,

so that the coefficient on the complexity term would then be very large, regardless

of what the complexity bound factors α and ρ are. As a result, intuitively, this

bound is unlikely to be tight due to the large coefficient on the complexity term.

Consequently, it would then be natural to consider a middle-ground choice of the

cross entropy loss where this bound is the most tight by varying ε ∈ (0, 1). Since

ε log 1
ε

is maximized at ε = 1
e

for a maximal value of 1
e
, such a choice in the clipping

factor would indeed yield the tightest bound for the complexity bound in terms of

the bounding slack of the result stated in lemma 3.5.

This is great news for the complexity term. What about the training loss term?

Intuition tells us that, with a clipping factor of ε = e−1 that is slightly more

than a third of the way into the interval (0, 1) from zero, the classifier is not

being penalised as strongly for assigning probabilities smaller than e−1 to observed

classes as compared to very small values of ε. Furthermore, beyond the clipping

point, assigning even lower probabilities to the observations does not result in a

higher loss. In practice, the cross entropy loss is renowned for its rapidly growing

penalty as the probability assignment gets lower, which is advantageous when

using a gradient based optimization scheme. In this case, the gradients are large

in magnitude and the classifier can adjust and fix these assignment errors relatively

quickly. In other words, by using a slightly larger clipping factor than usual, we

have seemingly lost the faster convergence properties from using a cross entropy

loss.

Nevertheless, observe that for such a clipping factor ε = e−1, the normalization

constant becomes Me−1 = − log 1
e

= 1, so that it is effectively removed. Further-

more, we also have the following simple upper bound for the cross entropy loss
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clipped at ε = e−1,

L̄e−1(y, f(x)) = Le−1(y, f(x)) ≤ Lε(y, f(x)) ∀ε ∈ (0, e−1), x ∈ X , y ∈ Y . (3.62)

To see why inequality (3.62) holds, note that [fy(x)]1ε ≤ [fy(x)]1e−1 holds for all

ε ∈ (0, e−1), x ∈ X , y ∈ Y . Applying negative log to both sides yields the inequality

from definition (3.54).

Therefore, we propose to choose ε = e−1, and then replace replace Le−1 with Lε for

some new generic ε ∈ (0, e−1) much smaller than e−1 on the training loss terms. In

this way, we still maintain an upper bound for the training loss term. While this

bound would not necessarily be tight for high training losses, the gradients from

the high training loss would drive the system to a lower training loss, where the

bound would become tight again as equality holds in (3.62) whenever fy(x) ≥ e−1.

The above intuition motivates the result in the following theorem.

Theorem 3.10 (MCE ε-Specific Expected Risk Bound). Suppose that the trace

norm ‖Wθ,λ‖tr ≤ ρ is bounded for all θ ∈ Θ, λ ∈ Λ. Further suppose that the

canonical feature map ‖φθ(x)‖2
Hkθ

= kθ(x, x) ≤ α2, α > 0, is bounded in RKHS

norm for all x ∈ X , θ ∈ Θ. For any integer n ∈ N+ and any set of training obser-

vations {xi, yi}ni=1, with probability of at least 1−β over iid samples {Xi, Yi}ni=1 of

length n from PXY , every f ∈ Fn(Θ,Λ) satisfies

E[Le−1(Y, f(X))] ≤ 1

n

n∑
i=1

Lε(Yi, f(Xi)) + 4e αρ+

√
8

n
log

2

β
, (3.63)

for any ε ∈ (0, e−1). Equivalently, the bound (3.63) holds for f = fθ,λ(x) for every

θ ∈ Θ, λ ∈ Λ.

Proof. We first apply lemma 3.6 with ε = e−1,

E[Le−1(Y, f(X))] ≤ 1

n

n∑
i=1

Le−1(Yi, f(Xi)) + 4e αρ+

√
8

n
log

2

β
. (3.64)

For any ε ∈ (0, e−1), the inequality Le−1(Yi, f(Xi)) ≤ Lε(Yi, f(Xi)) holds almost

surely (a.s.) due to the deterministic inequality (3.62). These sets of inequalities

together proves the claim.

3.8.3 Hyperparameter Learning

We are now ready to use the result of theorem 3.10 to derive a specific expected

risk bound for a given choice of hyperparameters θ ∈ Θ and λ ∈ Λ of the MCE,
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and not just for a general set of hyperparameters. We focus on kernels kθ that are

bounded over the domain X in the sense that for each θ ∈ Θ, kθ(x, x) <∞ for all

x ∈ X .

For some kernel hyperparameters θ̃ ∈ Θ and regularization hyperparameter λ̃ ∈ Λ,

we construct a subset of hyperparameters (kernel hyperparameters and regular-

ization hyperparameters) Ξ(θ̃, λ̃) ⊆ Θ× Λ such that

Ξ(θ̃, λ̃) := {(θ, λ) ∈ Θ× Λ : ‖Wθ,λ‖tr ≤ ‖Wθ̃,λ̃‖tr,

sup
x∈X

kθ(x, x) ≤ α2(θ̃) := sup
x∈X

kθ̃(x, x)}. (3.65)

Clearly, this subset is non-empty, since (θ̃, λ̃) ∈ Ξ(θ̃, λ̃) is itself an element of this

subset. Note that α : Θ → R+ must necessarily exist as the kernel family kθ is

assumed to be bounded over the domain X . The class of MCEs over this subset

of hyperparameters is

Fn(Ξ(θ̃, λ̃)) := {fθ,λ(x) : (θ, λ) ∈ Ξ(θ̃, λ̃)}. (3.66)

Thus, we can assert that the trace norm ‖Wθ,λ‖tr ≤ ρ = ‖Wθ̃,λ̃‖tr is bounded for

all (θ, λ) ∈ Ξ(θ̃, λ̃), and that the canonical feature map ‖φθ(x)‖2
Hkθ

= kθ(x, x) ≤
α2 = supx∈X kθ̃(x, x) is bounded in RKHS norm for all x ∈ X , (θ, λ) ∈ Ξ(θ̃, λ̃). By

theorem 3.10, we can now claim the following.

Lemma 3.7 (MCE Expected Risk Bound for Hyperparameter Sets). For any

integer n ∈ N+ and any set of training observations {xi, yi}ni=1, with probability

1 − β over iid samples {Xi, Yi}ni=1 of length n from PXY , every (θ, λ) ∈ Ξ(θ̃, λ̃)

satisfies

E[Le−1(Y, fθ,λ(X))] ≤ 1

n

n∑
i=1

Lε(Yi, fθ,λ(Xi))

+ 4e
√

sup
x∈X

kθ̃(x, x)‖Wθ̃,λ̃‖tr +

√
8

n
log

2

β
,

(3.67)

for every ε ∈ (0, e−1), where

fθ,λ(x) :=YT (Kθ + nλI)−1kθ(x),

‖Wθ̃,λ̃‖tr =

√
trace

(
YT (Kθ̃ + nλ̃I)−1Kθ̃(Kθ̃ + nλ̃I)−1Y

)
.

(3.68)

Proof. We first apply theorem 3.10 with the choice of ρ = ‖Wθ̃,λ̃‖tr and α2 =

supx∈X kθ̃(x, x). The inequality (3.63) then only holds for a subset of kernel hy-

perparameters and regularizations (θ, λ) ∈ Ξ(θ̃, λ̃) as defined by (3.65).
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Since inequality (3.67) holds for any (θ, λ) ∈ Ξ(θ̃, λ̃) and we know that (θ̃, λ̃) ∈
Ξ(θ̃, λ̃), we choose θ = θ̃ and λ = λ̃. We now arrive at our final result from which

we can bound the expected risk for a specific choice of hyperparameters θ ∈ Θ

and λ ∈ Λ.

Theorem 3.11 (MCE Expected Risk Bound for Hyperparameters). For any in-

teger n ∈ N+ and any set of training observations {xi, yi}ni=1, with probability 1−β
over iid samples {Xi, Yi}ni=1 of length n from PXY , every θ ∈ Θ and λ ∈ Λ satisfies

E[Le−1(Y, fθ,λ(X))] ≤ 1

n

n∑
i=1

Lε(Yi, fθ,λ(Xi)) + 4e r(θ, λ) +

√
8

n
log

2

β
, (3.69)

for every ε ∈ (0, e−1), where

fθ,λ(x) := YT (Kθ + nλI)−1kθ(x),

r(θ, λ) :=

√
trace

(
YT (Kθ + nλI)−1Kθ(Kθ + nλI)−1Y

)
sup
x∈X

kθ(x, x).
(3.70)

Proof. We first apply lemma 3.7 with the choice of θ = θ̃ and λ = λ̃. We then

replace the notation θ̃ → θ and λ̃→ λ back to avoid cluttered notation. Note that

this should not be confused with the general θ and λ from earlier theorems.

3.9 Model Architectures

For MCEs, the modeling lies in the choice of the kernel family kθ : X ×X → R over

the input space X . The only requirement for the kernel k is that it is symmetric

and positive definite, and thus we may construct richer and more expressive kernel

families in any way subject to such requirements. Once such a kernel family is

constructed, the kernel hyperparameters θ, as well as the regularization hyperpa-

rameter λ, can be learned effectively using algorithm 1. Our learning algorithm

does not restrict the way the kernel kθ is constructed from its hyperparameters

θ ∈ Θ.

One way to construct richer and more expressive kernels is to compose them

from simpler kernels. For example, we can construct new kernels through convex

combinations or products of multiple simpler kernels [Genton, 2001]. Any new

parameters, such as coefficients for linear combinations of simpler kernels, can

be included into the kernel hyperparameters θ and learned in the same way as

before. Alternatively, there may be domain specific structures or representations

within the data that can be exploited. We can then construct the kernel family

by incorporating such structural representations into the kernel. Even better, we
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Table 3.1: Properties of MCE model architectures

MCE Variant Width Depth Scalability Flexibility Typical Datasets

Implicit MCE Wide Shallow Low High High or Low d, Low n
Explicit MCE Narrow Shallow High Low Low d, High n
Implicit CEN Wide Deep Low High Structured d, Low n
Explicit CEN Narrow Deep High High Structured d, High n

can construct the kernel family so that it is capable or learning such structural

representations by itself, by parameterizing such representations into the kernel.

In this section, we focus on special cases of the MCE where the kernel family is

constructed through explicit feature maps. This construction allows the incor-

poration of trainable domain specific structures and enables scalability to larger

datasets. We first begin by introducing the explicit MCE in section 3.9.1, where

explicit feature maps can be learned while enabling scalability to larger datasets.

We then construct the conditional embedding network (CEN) in section 3.9.2,

where the kernel family is formed from multiple layers of learned representations

before a simpler kernel encodes their similarity for inference. Finally, we marry

both constructions into the explicit CEN in section 3.9.3, which provides a scalable

and more applicable version of the deep CEN by placing a linear kernel on the

network features.

In essence, we can categorize MCE model architectures using two properties: the

model width and the model depth. The model width represents the dimensionality

of the feature space used to construct the linear decision boundaries. The model

depth represents the number of transformations used to map examples from the

input space to the feature space. By implicitly defining a high dimensional feature

space through simple transformations, typical nonlinear kernels produce classifiers

that have a shallow but wide architecture. In contrast, the three MCE variants

to be introduced in this section form other combinations of model architecture

in both depth and width. Of course, as a direct consequence of the kernel trick,

this characterization of architecture is not mutually exclusive. For example, a

polynomial kernel can be seen as a nonlinear kernel where higher order polynomial

features are implicitly defined, or as a linear kernel on explicit polynomial features.

We summarize those architectures in table 3.1.

3.9.1 Explicit Multiclass Conditional Embedding

The advantage of using a kernel-based classifier is that the kernel k allows us

to express nonlinearities in a simple way. It does this by implicitly mapping

the input space X to a high dimensional feature space Hk of non-linear basis

functions such that decision boundaries become linear in that space. For many
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kernels, such as the Gaussian kernel defined over the Euclidean space, the feature

space Hk has dimensionality that is uncountably infinite. Nevertheless, by virtue

of the Representer Theorem [Kimeldorf and Wahba, 1971], the resulting decision

functions can be represented by a finite linear combination of kernels centered at

the training data, and the MCE is no exception. This elegant and convenient

result enables exact inference to be performed while only requiring a finite kernel

gram matrix of the size of the dataset (n × n) to be computed. In this way,

the capacity of the model grows with the size of the dataset, which makes kernel

methods nonparametric and very flexible, as it can adapt to the complexity of a

dataset even with relatively simple kernels.

However, this elegant property is also the very reason that prevents kernel-based

methods from scaling to larger datasets, as the size of such a gram matrix grows

very quickly by O(n2). Many kernel-based methods also require the inversion of

a regularized gram matrix, which has a time complexity of O(n3), and cannot

be easily parallelized like standard matrix multiplications. As such, inference on

datasets beyond tens of thousands of observations quickly becomes impractical to

perform with kernel-based techniques.

In order to scale to big datasets, instead of placing a kernel over the input space

directly and let it implicitly define the feature space, we explicitly define a finite

dimensional feature space Z ⊆ Rp of lower dimension p, where p < n, and place

a linear kernel over it. That is, we specify a family of explicit features maps

ϕθ : X → Z, and place a linear kernel on top of these explicit features,

kθ(x, x
′) = ϕθ(x)Tϕθ(x

′). (3.71)

By explicitly defining a finite dimensional feature space, the matrix to be inverted

during both learning and inference in the MCE can be reduced from size n × n
to size p × p by using the Woodbury matrix inversion identity [Higham, 2002],

reducing the time complexity to O(p3 + np2). This allows scalable learning for

n >> p even without using batch gradient updates. For inference, standard

map reduce methods can be used. We use this identity to modify algorithm 1

to algorithm 2 to exploit this computational speed up.

However, with a fixed and finite amount of feature basis, the model becomes para-

metric and its flexibility is compromised. In other words, the model is narrow in

the number of feature representations. We therefore turn to multi-layered feature

compositions, where the flexibility of a model comes from the deep architecture

instead of implicit high dimensional features.
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Algorithm 2 MCE Hyperparameter Learning with Stochastic Gradient Updates:
Parametric Model Architecture with Explicit Features

1: Input: feature family ϕθ : X → Z ⊆ Rp, data {xi, yi}ni=1, feature parameters
θ0, regularization hyperparameter λ0, learning rate η, batch size nb

2: θ ← θ0, λ← λ0

3: repeat
4: Sample the next batch Ib ⊆ Nn, s.t. |Ib| = nb
5: Y ← {δ(yi, c) : i ∈ Ib, c ∈ Nm} ∈ {0, 1}nb×m
6: Zθ ← {ϕθ(xi) : i ∈ Ib} ∈ Rnb×p

7: Lθ,λ ← cholesky(ZT
θ Zθ + nbλIp) ∈ Rp×p

8: Wθ,λ ← LTθ,λ\(Lθ,λ\ZT
θ Y ) ∈ Rp×m

9: Pθ,λ ← ZθWθ,λ ∈ Rnb×m

10: r(θ, λ) = α(θ)
√∑m

c=1

∑p
j=1(Wθ,λ)2

j,c

11: q(θ, λ)← 1
nb

∑nb
i=1 Lε((Y )i, (Pθ,λ)i) + 4e r(θ, λ)

12: (θ, λ)← GradientBasedUpdate(q, θ, λ; η)
13: until maximum iterations reached
14: Output: kernel hyperparameters θ, regularization hyperparameter λ

3.9.2 Conditional Embedding Network

For many application domains, there are natural structures in the data. For

example, in image recognition, pixel dimensions are spatially correlated: nearby

pixels are more related, and ordering between the pixel dimensions matter. One

would expect convolutional features [LeCun et al., 1998] to be natural in this

domain, and provide a performance boost to our classifier should it be included.

In this way, we can often benefit by including domain specific structures and

features into our model.

In this section, we focus on constructing kernels for which inputs x, x′ ∈ X is to

undergo various stages of feature transformations before such it is passed into a

simpler kernel κ that captures the similarity between the representations. Specif-

ically, we pay particular attention to feature transformations in the form of a

perceptron, so that the cumulative stages of feature transformation become the

(feed-forward) multi-layer perceptron that is familiar within the neural network

literature.

Formally, let F0 := X be the original input space. The jth layer of the network

ϕ
(j)
θj

: Fj−1 → Fj, j = 1, 2, . . . , L is to transform features from the previous layer

to features in the current layer, where L is the total number of such feature trans-

formation layers, and θj ∈ Θj parametrizes each of those transformations.

For example, in a typical multi-layer perceptron context, each layer can be written

as ϕ
(j)
θj

(x) = σ(Wjx + bj), where Wj and bj are the weight and bias parameters

of the layer, and σ is an element-wise activation function, typically the rectified
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linear unit (ReLU) or the sigmoid. In this case, the layer is parametrized by

θj = {Wj, bj}.

Let κθ0 : Fp × Fp → R be parametrized by θ0 ∈ Θ0. We will construct our kernel

network k by

kθ(x, x
′) := κθ0

(
ϕ

(L)
θL

(
ϕ

(L−1)
θL−1

(
. . . ϕ

(2)
θ2

(
ϕ

(1)
θ1

(x)
)))

,

ϕ
(L)
θL

(
ϕ

(L−1)
θL−1

(
. . . ϕ

(2)
θ2

(
ϕ

(1)
θ1

(x′)
))))

,

(3.72)

where θ = (θ1, θ2, . . . , θL−1, θL, θ0) ∈ Θ = Θ1⊗Θ2⊗ · · · ⊗ΘL−1⊗ΘL⊗Θ0 are the

collection of all parameters of each layer and the kernel κ.

In order to train the multi-layered representations in an end-to-end fashion, we

employ algorithm 1. With a deep architecture, the feature representations the

CEN can learn are very flexible, and can work very well for structured data by

employing suitable network architectures.

If we choose to employ nonlinear kernels κ, the model architecture is also wide in

that an even higher dimensional feature space is implicitly defined on top of the

feature space of the last network layer. Despite its supreme flexibility, this again

prevents the model from being scalable. We therefore turn to the specific case

where we employ a linear kernel κ on top of the multi-layered features.

3.9.3 Explicit Conditional Embedding Network

The explicit CEN is simply a special case at the intersection of the explicit MCE

and the CEN. From the explicit MCE perspective, we simply choose the feature

map ϕθ(x) = ϕ
(L)
θL

(
ϕ

(L−1)
θL−1

(. . . ϕ
(2)
θ2

(ϕ
(1)
θ1

(x)))
)
. From the CEN perspective, we sim-

ply choose κ(z, z′) = zT z′ to be a linear kernel.

This model architecture is a very practical and powerful form of the MCE. By

having a deep architecture, the classifier is still capable of learning flexible repre-

sentations on structured data, while being able to scale to larger datasets due to

the linear kernel at the output layer, provided that the dimensionality of the last

layer is relatively small compared to the size of the dataset.

An extremely useful example is when the features are formed from a deep convo-

lutional neural network (CNN) for image datasets, where the CEN could leverage

from the inductive bias the convolutional features provides while benefiting from

improved tractability.
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Figure 3.1: Rademacher complexity balanced learning of hyperparameters for
an isotropic Gaussian MCE using the first two attributes of the iris dataset

As a subclass of explicit MCE, we can employ algorithm 2 to learn the multi-

layered features effectively. In fact, by not mapping the multi-layered features

into a nonlinear kernel, the gradients for each network weight and bias are usually

more pronounced, and learning is usually faster in comparison. This approach was

used to train the neural network features in our experiments.

3.10 Experiments

3.10.1 Toy Example

The first two of four total attributes of the iris dataset [Fisher, 1936] are known to

have class labels that are non-separable by any means, in that the same example

x ∈ R2 may be assigned different output labels y ∈ N3 := {1, 2, 3}. In these

difficult scenarios, the notion of model complexity is extremely important, and

the success of a learning algorithm greatly depends on how it balances training

performance and model complexity to avoid both underfitting and overfitting.

Figure 3.1 demonstrates algorithm 1 with full gradient updates (nb = n) to learn

hyperparameters of the MCE on the two attribute iris dataset. The kernel used

is isotropic Gaussian with diagonal length scales Σ = `2I2 and sensitivity α = σf ,

so that the hyperparameters are θ = (α, `) and λ. We evaluate the performance

of the learning algorithm on a withheld test set using 20% of the available 150

data samples. Attributes are scaled into the unit range [0, 1] and decision proba-

bility maps are plotted for the region [−0.05, 1.05]2, where the red, green, and blue
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Table 3.2: Test accuracy (%) on UCI datasets

Method banknote ecoli robot segment wine yeast

GMCE 99.9± 0.2 87.5± 4.4 96.7± 0.9 98.4± 0.8 97.2± 3.7 52.5± 2.1
GMCE-SGD 98.8± 0.9 84.5± 5.0 95.5± 0.9 96.1± 1.5 93.3± 6.0 60.3± 4.4
CEN-1 99.5± 1.0 87.5± 3.2 82.3± 7.1 94.6± 1.6 96.1± 5.0 55.8± 5.0
CEN-2 99.4± 0.9 86.3± 6.0 94.5± 0.8 96.7± 1.1 97.2± 5.1 59.6± 4.0
ERM 99.9± 0.2 72.1± 20.5 91.0± 3.7 98.1± 1.1 93.9± 5.2 45.9± 6.4
CV 99.9± 0.2 73.8± 23.8 90.9± 3.4 98.3± 1.3 93.3± 7.4 58.0± 5.8
MLH 92.0± 4.3 42.1± 47.7 81.1± 6.2 27.3± 26.4 93.3± 7.8 31.2± 14.1
Others 99.78a 81.1b 97.59c 96.83d 100e 55.0b

color channels represent the clip-normalized decision probability (3.6) for classes

c = 1, 2, 3. We begin from two initial sets of hyperparameters, one originally over-

fitting and another underfitting the training data. Initially, both models perform

sub-optimally with a test accuracy of 56.67%. We see that the RCB r(θ, λ) appro-

priately measures the amount of overfitting with high (resp. low) values for the

overfitted (resp. underfitted) model. We then learn hyperparameters with algo-

rithm 1 for 500 iterations from both initializations at rate η = 0.01, where both

models converges to a balanced model with a moderate RCB and an improved test

accuracy of 73.33%. In particular, the initially overfitted model learns a simpler

model at the expense of lower training performance, emphasizing the benefits of

complexity based regularization, without which the learning would only maximize

training performance at the cost of further overfitting. Meanwhile, the initially

underfitted model learns to increase complexity to improve the sub-optimal per-

formance on the training set.

3.10.2 UCI Datasets

We demonstrate the average performance of learning anisotropic Gaussian kernels

and kernels constructed from neural networks on standard UCI datasets [Bache

and Lichman, 2013], summarized in table 3.2. The former has a shallow but wide

model architecture, while the latter has a deeper but narrower model architec-

ture. The Gaussian kernel is learned with both full and batch stochastic gradi-

ent updates, referred as Gaussian multiclass conditional embedding (GMCE) and

GMCE-stochastic gradient descent (SGD) respectively, using a tenth (nb ≈ n
10

) of

the training set each training iteration, with sensitivity and length scales initial-

ized to 1. For CENs, we randomly select two simple fully connected architectures

with 16-32-8 (CEN-1) and 96-32 (CEN-2) hidden units respectively, and learn the

conditional mean embedding without dropout under ReLU activation. Biases and

standard deviations of zero mean truncated normal distributed weights are initial-

ized to 0.1, and are to be learned with full gradient updates. For all experiments,
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λ is initialized to 1 and is learned jointly with the kernel. Optimization is per-

formed with the Adam optimizer [Kingma and Ba, 2016] in TensorFlow [Abadi

et al., 2016] with a rate of η = 0.1 and ε = 10−15 under the learning objective

q(θ, λ) (3.18). Learning is run for 1000 epochs to allow direct comparison. All

attributes are scaled to the unit range. Each model is trained on 9 out of 10 folds

and tested on the remaining fold, which are shuffled over all 10 combinations to

obtain the test accuracy average and deviation. We compare our results to MCEs

whose hyperparameters are tuned by ERM (without the RCB term in (3.18)),

CV, and the MLH, as well as to other approaches using neural networks [Freire

et al., 2009, Kaya et al., 2016, a; c], probabilistic binary trees [Horton and Nakai,

1996, b], decision trees [Zhou et al., 2004, d], and regularized discriminant analysis

[Aeberhard et al., 1992, e].

Table 3.2 shows that our learning algorithm outperforms other hyperparameter

tuning algorithms, and performs similarly to competing methods. Our method

achieves this without any case specific tuning or heuristics, but by simply plac-

ing a conditional mean embedding on training data and applying a complexity

bound based learning algorithm. The stochastic gradient approach for Gaussian

kernels performs similarly to the full gradient approach, supporting the claim of

theorem 3.5 for n = nb. For CENs, we did not attempt to choose an optimal

architecture for each dataset. The learning algorithm is tasked to train the same

simple network for different datasets using 1000 epochs to achieve comparable

performance.

3.10.3 Learning pixel relevance

We apply algorithm 1 to learn length scales of anisotropic Gaussian, or ARD,

kernels on pixels of the MNIST digits dataset [LeCun et al., 1998]. In the top left

plot of figure 3.2, we train on datasets of varying sizes, from 50 to 5000 images, and

show the accuracy on the standard test set of 10000 images. All hyperparameters

are initialized to 1 before learning. We train both SVCs and GPCs under the

OVA scheme, and use a Laplace approximation for the GPC posterior. In all cases

MCEs outperform SVCs as it cannot learn hyperparameters without expensive

cross validation. MCEs also outperform GPCs as more data becomes available.

Under the OVA scheme, the GPC approach learns a set of kernel hyperparameters

for each class, while our approach learns a consistent set of hyperparameters for

all classes. Consequently, for 5000 data points, the computational time required

for hyperparameter learning of GPCs is on the order of days even for isotropic

Gaussian kernels, while algorithm 1 is on the order of hours for anistropic Gaussian

kernels even without batch updates. We also compare hyperparameter learning

with and without the RCB. For small n below 750 samples, the latter outperforms

the former (e.g. 86.69% and 86.96% for n = 500), while for large n the former
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Figure 3.2: Top: Test accuracy by learning Gaussian kernels (left) and deep
convolutional features (right); Bottom: Learned pixel length scales with ARD

outperforms the latter (e.g. 96.05% and 95.3% for n = 5000). This verifies that

complexity based regularization becomes especially important as data size grows,

when overfitting starts to decrease generalization performance. The images at the

bottom of figure 3.2 show the pixel length scales learned through batch stochastic

gradient updates (nb = 1200) over all available training images the groups of digits

shown, demonstrating the most discriminative regions.

3.10.4 Learning convolutional layers

We now apply algorithm 1 to train a CEN with convolutional layers on MNIST.

We employ an example architecture from the TensorFlow tutorial on deep MNIST

classification [Abadi et al., 2016]. This ReLU activated CNN uses two convolu-

tional layers, each with max pooling, followed by a fully connected layer with

a drop out probability of 0.5. The original CNN then employs a final softmax

regressor on the last hidden layer for classification. The CEN instead employs a

linear kernel on the last hidden layer to construct the conditional mean embedding.

We then train both networks from the same initialization using batch updates of

nb = 6000 images for 800 epochs, with learning rate η = 0.01. All biases and

weight standard deviations are initialized to 0.1. The network weights and biases

of the CEN are learned jointly with the regularization hyperparameter, initialized

to λ = 10, under our learning objective (3.18), while the original CNN is trained

under its usual cross entropy loss. The fully connected layer is trained with a drop

out probability of 0.5 for both cases to allow direct comparison. The top right plot

in figure 3.2 shows that CENs learn at a much faster rate, maintaining a higher

test accuracy at all epochs. After 800 epochs, CEN reaches a test accuracy of

99.48%, compared to 99.26% from the original CNN. This demonstrates that our

learning algorithm can perform end-to-end learning with convolutional layers from

scratch, by simply replacing the softmax layer with a MCE. The resulting CEN

can outperform the original CNN in both convergence rate and accuracy.
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3.11 Summary and Future Work

In this chapter we propose a hyperparameter learning framework for CMEs when

the target is discrete. This naturally results in a nonparametric probabilistic

multiclass classifier whose convergence properties can be guaranteed, which we

call the MCE. The MCE is inherently highly general and flexible in architecture.

To prevent overfitting, we develop a scalable hyperparameter learning framework

for CMEs based on learning theoretic bounds, by justifying the use of stochastic

batch gradient updates. These bounds reveal the RCB as a novel data-dependent

quantity that reflect the model complexity. This measure automatically appears in

the learning objective and acts as a regularization term in addition to the empirical

loss for hyperparameter learning. We show that the MCE can be constructed from

general model architectures such as neural networks and trained under our learning

algorithm, and demonstrate that it outperforms the original model architecture.

In a similar light to the case with regularized least squares, it remains to be

established what type of prior, if any, could correspond to the RCB. This would

lead to a fully Bayesian interpretation of our framework. We also envision that

such a quantity could potentially be generalized to CMEs with arbitrary targets,

which would enable hyperparameter learning for general CMEs in a way that is

optimized for any general prediction task. Finally, our framework and algorithm

is simple, and developments in establishing deeper connections and relationships

with other kernel based models can be fruitful.



Chapter 4

Bayesian Learning of

Conditional Kernel Mean Embeddings

for Automatic Likelihood-Free Inference

In likelihood-free settings where likelihood evaluations are intractable, approxi-

mate Bayesian computation (ABC) addresses the formidable inference task to dis-

cover plausible parameters of simulation programs that explain the observations.

However, they demand large quantities of simulation calls. Critically, hyperparam-

eters that determine measures of simulation discrepancy crucially balance inference

accuracy and sample efficiency, yet are difficult to tune. In this paper, we present

kernel embedding likelihood-free inference (KELFI), a holistic framework that au-

tomatically learns model hyperparameters to improve inference accuracy given

limited simulation budget. By leveraging likelihood smoothness with conditional

mean embeddings, we nonparametrically approximate likelihoods and posteriors

as surrogate densities and sample from closed-form posterior mean embeddings,

whose hyperparameters are learned under its approximate marginal likelihood.

Our modular framework demonstrates improved accuracy and efficiency on chal-

lenging inference problems in ecology.

4.1 Introduction

Scientific understanding of complex phenomena are deeply reliant on the study of

probabilistic generative models and their match with real world data. Often, latent

and convoluted interactions result in intractable likelihood evaluations, making

the setting likelihood-free. Instead, generative models are expressed as a stochastic

forward model simulator. Inference on latent variables in this setting is particularly

challenging.

85
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Approximate Bayesian computation (ABC) methods are the state-of-the-art in

simulation-based Bayesian inference with intractable likelihoods [Marin et al.,

2012]. They infer posterior distributions of simulator parameters that aim to

explain observed data. The posterior is of interest in its own right for under-

standing the complex phenomena, and also useful in forming predictions of future

observations. They are popular due to their simplicity and applicability, and

have been used extensively in the biological sciences [Beaumont, 2010, Toni et al.,

2009]. Nevertheless, complex models are often prohibitively expensive to simulate.

Evolutionary processes of ecological systems, vibrational modes of a mechanical

structure, and fluid flow across surfaces are all examples that result in formidable

inference problems with demanding forward simulations. It is thus imperative for

inference algorithms to perform under the constraint of limited simulation calls,

posing an exceptionally challenging task.

Often, ABC methods rely on discrepancy measures between simulations and ob-

servations that are parametrized by hyperparameters such as ε. The resulting

posterior approximation is highly sensitive to the choice of hyperparameters, yet

appropriate hyperparameter tuning strategies remain to be established.

To address these issues, we present KELFI, a holistic framework consisting of

(1) the kernel means likelihood (KML) as a consistent surrogate likelihood model

that modularizes approximate likelihood evaluations from simulation calls, (2) the

marginal kernel means likelihood (MKML) as a Bayesian learning objective for

hyperparameters that improves inference accuracy, (3) the kernel means poste-

rior (KMP) as a posterior surrogate density for approximate Bayesian inference

on simulator parameters, and (4) the kernel means posterior embedding (KMPE)

leading to a super-sampling algorithm for fast-converging posterior samples of

simulator parameters. We further present the spatio-temporal kernel means likeli-

hood (ST-KML) and independent and identically distributed kernel means likeli-

hood (iid-KML) to alleviate the requirement for designing summary statistics for

spatio-temporal data and iid data respectively. Finally, we address computational

or analytical challenges for complex or intractable priors.

KELFI is based on approximating likelihoods with simulation samples using CMEs.

CMEs encode conditional expectations empirically by leveraging smoothness within

a RKHS with only a small number of examples. This modularizes inference away

from simulation calls. Consequently, scientists can proceed with posterior analysis

after any number of simulations. Furthermore, KELFI infers both approximate

posterior densities and samples. Critically, our learning algorithm tunes hyperpa-

rameters directly for the inference problem, including adapting ε to the number

of simulations used. This removes the need for practitioners to arduously select

hyperparameters. Finally, it can be extended to automatically learn the relevance

and usefulness of each summary statistic.
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4.2 Likelihood-Free Inference

We begin by setting up notations for the likelihood-free setting. Let θ ∈ ϑ denote

a realization of the latent variable or parameter Θ, where we use upper cases

to denote random variables. Let x ∈ X and y ∈ Y where X ,Y ⊆ D denote

realizations of simulation output X and observations Y respectively.

In the likelihood-free setting, we begin with a stochastic forward model simulator

which synthesizes simulations x given a parameter setting θ. The simulator is often

a computer program which takes a parameter setting as input, makes internal

calls to a pseudo-random number generator, and outputs a a simulation result

x in ideally the same structure as the observations y. In this sense, while the

simulation result conditioned on the parameter setting and the internal pseudo-

random numbers is deterministically generated, the simulation result conditioned

on the parameter setting only is considered stochastically generated. We represent

the stochastic simulator as pX|Θ from which we can only sample xj ∼ pX|Θ(·|θj),
but not query its density pX|Θ(x|θ) at particular simulation result x ∈ X and

parameter θ ∈ ϑ, making likelihood evaluations intractable, thus likelihood-free.

To begin inference we posit a prior density pΘ that encodes general prior knowl-

edge about plausible parameter settings to guide the inference, which are usually

informed by the problem setting itself. We assume that evaluations of the prior

density pΘ(θ) at any particular parameter θ ∈ ϑ is tractable. However, we will

also address the setting when only samples from the prior is available.

When writing density evaluations and the random variable the density is describ-

ing is clear from the context, we will drop the subscript. For example, p(θ) is

shorthand for pΘ(θ) and p(x|θ) is shorthand for pX|Θ(x|θ).

The goal of the inference problem is to find plausible parameter settings that could

have generated the observations y, or the posterior of parameter settings given ob-

servations y. The underlying assumption is that y was generated from pX|Θ for

some parameter setting. This however presents a trade-off. A rich and complex

simulator may be able to replicate the process from which observations y was gen-

erated for a particular parameter setting. However, since each parameter setting

would produce a different rich and complex process, inference can be extremely

challenging. On the other hand, simple simulators may not be able to replicate

the true generation process for any parameter setting. Therefore, LFI seeks to

relax the inference problem it asks, and seeks to infer a posterior distribution on

the parameters θ that could generate simulations x that are only similar to our

observations y by some comparison measure, instead of exactly the same. We refer

to this as the soft posterior.
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To do this, we introduce a discrepancy measure called the ε-kernel or ABC kernel,

κε(y,x) := pε(y|x). (4.1)

A convenient and common choice is the Gaussian density pε(y|x) = N (y; x, ε2I)

[Moreno et al., 2016, Price et al., 2017]. It is worthwhile to note that κε is a

conditional probability density function and does not need to be a positive definite

kernel. For instance, it does not need to be symmetric, although it happens to

be symmetric when we use a Gaussian density, since N (y; x, ε2I) = N (x; y, ε2I).

However, the latter expression is not semantically relevant in this context.

Furthermore, the observation y is often fixed within a given LFI problem, while

the simulation x varies throughout the LFI procedure. Consequently, the ε-kernel

is often tasked with comparing the same y against different x, so that we are more

concerned with properties of κε(y, ·), the ε-kernel as a function of x for a fixed y.

The ε-kernel κε(y,x) captures the likelihood distribution of the observation y given

a simulation x. It posits that discrepancies of observations and simulations are

only due to noise which the ε-kernel quantifies, since we assume the simulator

is reasonably capable of reproducing the true data generation process. The LFI

setup then assumes that further knowledge of the parameter setting on top of the

simulation results are not informative, such that pε(y|x,θ) = pε(y|x).

Based on this formulation, the true full likelihood of our model can be written as

pε(y|θ) =

∫
X
pε(y|x)p(x|θ)dx = E[κε(y,X)|Θ = θ]. (4.2)

The corresponding posterior of interest is pε(θ|y) = pε(y|θ)p(θ)/pε(y) where

pε(y) =
∫
ϑ
pε(y|θ)p(θ)dθ. Due to the presence of a non-zero ε, even a perfect ap-

proximation to the soft posterior pε(θ|y) will not be the exact posterior pε=0(θ|y)

unless ε is annealed to zero. This is the necessary trade-off we make with limited

simulations, where a non-zero ε is essential for tractable inference because no sim-

ulations will match the observations exactly in practice. If y is only available as

a summary statistic, then this soft posterior pε(θ|y) that we are targeting is only

an approximation to the posterior given the full data even with ε = 0.

So far, x and y denote either the full dataset or their summary statistics. This

is because summary operations can be appended to the simulator program to

output statistics directly. In either case, we let the target posterior be pε(θ|y), so

the inference problem remains structurally identical. For simplicity however, from

here on x and y will denote summary statistics unless stated otherwise.
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4.3 Kernel Embedding Likelihood-Free Inference

We present KELFI in three stages. In the model stage, we build a surrogate likeli-

hood model by leveraging smoothness properties of CMEs. In the learning stage,

we derive a differentiable marginal surrogate likelihood to drive hyperparameters

learning. In the inference stage, we propose an algorithm to sample from the

resulting mean embedding of the surrogate posterior.

When the prior is an anisotropic Gaussian p(θ) =
∏D

d=1N (θd;µd, σ
2
d), closed form

solutions for KELFI exists. We will focus on this setting without loss of general-

ity. This is because, for many common continuous priors, the LFI problem can

be transformed into an equivalent problem that involves a Gaussian prior. For

instance, this can be achieved if an invertible transformation T exists such that

T (Z) ∼ p(θ) for Z ∼ p(z) where p(z) is a Gaussian. We discuss this in more detail

in section 4.7. When this is not possible or preferred, we present empirical forms

that can be approximate KELFI solutions arbitrarily well.

4.3.1 Conditional Mean Embeddings

We begin with an overview of CMEs in the context of KELFI. KMEs are an

arsenal of techniques used to represent distributions in a RKHS [Muandet et al.,

2017]. The key object is the mean embedding of a distribution X ∼ P under

a positive definite kernel k via µX :=
∫
X k(x, ·)dP(x) =

∫
X k(x, ·)p(x)dx ∈ Hk,

where the last equality assumes a density p for P exists and Hk denotes the RKHS

of k. They encode distributions in the sense that function expectations can be

written as E[f(X)] = 〈µX , f〉Hk if f ∈ Hk. When µX can only be estimated

empirically in some form denoted as µ̂X , the expectation can be approximated by

E[f(X)] ≈ 〈µ̂X , f〉Hk .

CMEs are KMEs that encode conditional distributions (see 2.4). We specifically

focus on their empirical estimates as we assume we only have the resource to obtain

m sets of simulation data due to budget constraints. This results in joint samples

{θj,xj}mj=1 from p(x|θ)π(θ) by sampling from a proposal prior π for θj ∼ π(θ)

and simulating xj ∼ p(x|θj) at each θj. Note these samples are not necessarily

from the original joint distribution p(x|θ)p(θ) if π 6= pΘ.

We define positive definite and characteristic kernels [Sriperumbudur et al., 2010a]

k : D × D → R and ` : ϑ × ϑ → R. When relevant, we denote the hyper-

parameters of k and ` with α and β, and refer to them as kα = k(·, ·;α) and

`β = `(·, ·; β). A useful example of such a kernel is an anisotropic Gaussian ker-

nel `(θ,θ′;β) = exp
(
− 1

2

∑D
d=1(θd − θ′d)2/β2

d

)
whose hyperparameters are length

scales β = {βd}Dd=1 for each dimension d ∈ [D] := {1, . . . , D}, and similarly for k.
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For any function f ∈ Hk, we construct an approximation to E[f(X)|Θ = θ] by

the inner product 〈f, µ̂X|Θ=θ〉Hk with an empirical CME µ̂X|Θ=θ. Importantly,

µ̂X|Θ=θ is estimated from the joint samples {θj,xj}mj=1, even though it is encoding

the corresponding conditional distribution p(x|θ). This approximation admits the

following form [Song et al., 2009],

E[f(X)|Θ = θ] ≈ fT (L+mλI)−1`(θ), (4.3)

where f := {f(xj)}mj=1, L := {`(θi,θj)}mi,j=1, `(θ) := {`(θj,θ)}mj=1, and λ ≥ 0 is a

regularization parameter. This approximation is known to converge at Op(m
− 1

4 )

if λ is chosen to decay at Op(m
− 1

2 ) or better under appropriate assumptions on

p(x|θ) [Song et al., 2013].

4.3.2 Model: Kernel Means Likelihood

We begin by presenting our surrogate likelihood model. Since the likelihood (4.2)

is an expectation under p(x|θ), we propose to approximate it via an inner product

with the CME of p(x|θ). Specifically, if we choose k such that κε(y, ·) ∈ Hk,

then pε(y|θ) can be approximated by q(y|θ) := 〈κε(y, ·), µ̂X|Θ=θ〉Hk . We refer

to q(y|θ) as the kernel means likelihood (KML). While the KML provides an

asymptotically correct likelihood surrogate, for finitely many simulations it is not

necessarily positive nor normalized. By using f = κε(y, ·) in (4.3) where κε(y) :=

{κε(y,xj)}mj=1 and v(y) := (L+mλI)−1κε(y), the KML becomes

q(y|θ) =
m∑
j=1

vj(y)`(θj,θ) = κε(y)T (L+mλI)−1`(θ). (4.4)

The KML converges at the same rate as the CME. See theorem 4.1 for proof. It

is worthwhile to note that the assumption `(θ, ·) ∈ image(CΘΘ) is common for

CMEs, and is not as restrictive as it may first appear, as it can be relaxed through

introducing the regularization hyperparameter λ [Song et al., 2013].

Theorem 4.1. Assume `(θ, ·) ∈ image(CΘΘ). The kernel means likelihood (KML)

q(y|θ) converges to the likelihood pε(y|θ) uniformly at rate Op((mλ)−
1
2 + λ

1
2 ) as a

function of θ ∈ ϑ and y ∈ Y.

To satisfy κε(y, ·) ∈ Hk, we choose the standard Gaussian ε-kernel κε(y,x) =

N (y; x, ε2I) and let kα = kε be a Gaussian kernel with length scale α = ε. Since

κε(y,x) and kε(y,x) are scalar multiples of each other, we have that κε(y, ·) ∈ Hk.

In fact, any positive definite kernel κε can be used, since we can simply choose kα
to be its scalar multiple to form the RKHS.

Importantly, instead of modeling the posterior mean embedding directly in a fash-

ion similar to kernel ABC (K-ABC), kernel recursive ABC (KR-ABC), and KBR,
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KELFI begins by using CMEs to approximate the full likelihood (4.2) first as a

surrogate likelihood, the KML. While the KML provides an asymptotically correct

surrogate for the likelihood, for finitely many simulations the KML is not necessar-

ily positive nor normalized. This makes the KML incompatible with to standard

approximate inference methods such as Markov chain Monte Carlo (MCMC) and

variational inference (VI), which require likelihoods or likelihood approximations

to be positive normalized densities. If one were to attempt to make the KML

compatible with MCMC or VI methods, we would require further amendments to

the KML, ranging from simple clipping [q(y|θ)]+ or even a positivity constraint

in the empirical least-squares problem for the CME weights. The latter stems

from the fact that CMEs can be seen as the solution to a vector valued regression

problem in the RKHS [Grünewälder et al., 2012]. However, these amendments

would however introduce further bias to the already biased likelihood approxima-

tion. Even though these biases vanishes asymptotically as the KML approaches

a valid density due to theorem 4.1, the asymptotic behavior is nevertheless rarely

reached under limited simulations, which is the scenario of interest. Consequently,

we propose to use the KML as is, without further unnecessary modifications that

would introduce further bias, and design learning and inference algorithms using

the KML directly.

4.3.3 Learning: Marginal Kernel Means Likelihood

We now propose a hyperparameter learning algorithm for our surrogate likelihood

model. The main advantage of using an approximate surrogate likelihood sur-

rogate model is that it readily provides a marginal surrogate likelihood quantity

that lends itself to a hyperparameter learning algorithm. We define the MKML

as follows,

q(y) :=

∫
ϑ

q(y|θ)p(θ)dθ =
m∑
j=1

vj(y)µΘ(θj) = κε(y)T (L+mλI)−1µΘ, (4.5)

where µΘ :=
∫
ϑ
`(θ, ·)p(θ)dθ is the mean embedding of pΘ, also called the prior

mean embedding, and µΘ := {µΘ(θj)}mj=1 are the evaluations of the prior mean

embedding. Note that we notate the subscripts of the random variable Θ since the

shorthand p(θ) of pΘ(θ) loses meaning if we want to refer to the density without

evaluating at a particular parameter θ, which would resulting in writing just p.

If we choose ` to be an anisotropic Gaussian kernel with length scales β = {βd}Dd=1,

then µΘ is closed-form for anisotropic Gaussian priors p(θ) =
∏D

d=1N (θd;µd, σ
2
d).
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Let ν2
d := β2

d + σ2
d, then we have

µΘ(θ) = `ν(θ,µ)
D∏
d=1

βd
νd
. (4.6)

Similar to the KML, the MKML converges at the same rate as the CME.

Theorem 4.2. Assume `(θ, ·) ∈ image(CΘΘ). The marginal kernel means like-

lihood (MKML) q(y) converges to marginal likelihood pε(y) uniformly at rate

Op((mλ)−
1
2 + λ

1
2 ) as a function of y ∈ Y.

Consequently, the MKML q(y) = q(y; ε,β, λ) approximates the true marginal

likelihood pε(y) of the inference problem defined by our likelihood-prior pair. It

is a function of the hyperparameters (ε,β, λ) of the ε-kernel and KML model. As

pε(y) is unavailable, we instead maximize the MKML for hyperparameter learning.

Furthermore, prior hyperparameters µ and σ can also be included and learned

jointly. Since the map (ε,β, λ) 7→ q(y; ε,β, λ) is differentiable, optimization can

be done in an auto-differentiation environment. The learning objective to be

optimized is computed in line 3 of algorithm 3. Each automatic gradient update

has complexity dominated by O(m3) due to the Cholesky decomposition in line 2.

However, since we are addressing scenarios where simulations are limited so that

m is small, this optimization is relatively fast.

Importantly, if we use an anisotropic Gaussian density for the ε-kernel κε where

ε = {εi}ni=1 are the length scales corresponding to each summary statistic y =

{yi}ni=1, we can perform ARD to learn the relevance and usefulness of each sum-

mary statistic, where a small length scale indicate high relevance for that statistic.

This is because ε are also the length scales of the kernel k which defines the RKHS

Hk. Since the anistropic Gaussian kernel is learned, we also refer to it as an ARD

kernel. We can also learn the length scales β = {βd}Dd=1 for the kernel `β on θ,

although we found that it is more useful to let β = β0σ where σ = {σd}Dd=1 are

the standard deviations of the Gaussian prior. By doing this, we make better use

of the scale differences within θ from the prior, and let β0 learn the overall scale

that is most useful for the KML.

For general non-Gaussian kernels and priors, µΘ in (4.5) can be approximated

using T independent prior samples θ̃t ∼ p(θ), t ∈ [T ], as

µ̃Θ :=
1

T

T∑
t=1

`(θ̃t, ·) =
1

T
L̃1T . (4.7)

In this case, the MKML can be approximated as

q̃(y) :=
1

T

T∑
t=1

q(y|θt) =
m∑
j=1

vj(y)µ̃Θ(θj) = κε(y)T (L+mλI)−1L̃1T . (4.8)
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Algorithm 3 KELFI: Kernel Embedding Likelihood-Free Inference

1: Input: Data y, simulations {θj,xj}mj=1 ∼ p(x|θ)π(θ), query parameters
{θ?r}Rr=1, KML hyperparameters (ε,β, λ), prior hyperparameters (µ,σ) or
samples {θ̃t}Tt=1, number of samples S, kernel ` and ε-kernel κ

2: Compute L← {`β(θi,θj)}mi,j=1 and κε(y)← {κε(y,xj)}mj=1

3: Compute KML weights v← (L+mλI)−1κε(y)
4: Compute L̃← {`β(θj, θ̃t)}m,Tj,t=1 and L̃? ← {`β(θ̃t,θ

?
r)}

T,R
t,r=1

5: Compute µΘ ← {µΘ(θj)}mj=1 using (4.6) or µΘ ← 1
T
L̃1T using (4.7)

6: Compute MKML q(y)← vTµΘ

7: Compute H ← {h(θj,θ
?
r)}

m,R
j=1,r=1 using (4.10) or H ← 1

T
L̃L̃? using (4.11)

8: Compute KMPE µ← HTv/q(y) ∈ RR and initialize a← 0 ∈ RR

9: for s ∈ {1, . . . , S} do
10: Obtain super-sample θ̂s ← θ?r? where r? ← arg maxr∈{1,...,R} µr − (ar/s)

11: Update kernel sum a← a + {`β(θ?r , θ̂s)}Rr=1

12: end for
13: Output: Posterior super-samples {θ̂s}Ss=1

By formulating a learning objective directly for the inference problem, KELFI

provides a way to automatically tune ε and its own model hyperparameters.

While our hyperparameter learning algorithm stemmed from the LFI setting, it

can be applied to learn hyperparmeters for general CMEs built from joint samples

by using the marginal distribution of the conditioned variable as the prior.

4.3.4 Inference: Kernel Means Posterior and Sampling

We finally present an approach for posterior inference by super-sampling directly

from the equivalent posterior mean embedding defined by the KML model and

the prior. Our approach begins by defining a surrogate density to approximate

the posterior pε(θ|y) in analogy to the Bayes’ rule, q(θ|y) := q(y|θ)p(θ)/q(y).

We refer to q(θ|y) as the kernel means posterior (KMP). Importantly, q(θ|y) is

unaffected even if κε is unnormalized, so that ε-kernels on distributions can be

readily used. While both q(θ|y) and q(y) are surrogate densities, by construction

the KMPq(θ|y) approaches the true posterior pε(θ|y) whenever the KML q(y|θ)

approaches the true likelihood pε(y|θ). Consequently, the KMP has the following

convergence properties.

Theorem 4.3. Assume `(θ, ·) ∈ image(CΘΘ) and that there exists δ > 0 such

that q(y) ≥ δ for all m ≥M where M ∈ N+. The kernel means posterior (KMP)

q(θ|y) converges pointwise to the posterior pε(θ|y) at rate Op((mλ)−
1
2 + λ

1
2 ) as a

function of θ ∈ ϑ and y ∈ Y. If supθ∈ϑ p(θ) < ∞ and supθ∈ϑ pε(y|θ) < ∞, then

the convergence is uniform in θ ∈ ϑ. If supy∈Y pε(θ|y) <∞, then the convergence

is uniform in y ∈ Y.
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Importantly, the requirement for a δ > 0 such that q(y) ≥ δ for all m ≥ M

where M ∈ N+ provides an intuition for why high MKML values are favorable

for learning a good approximate posterior. This requirement is a reflection on the

capability of the simulator to recreate the observations y relative to the scale ε.

Intuitively, the more capable the simulator p(x|θ) is at generating simulations x

that is close to y with respect to ε, the higher pε(y) > 0 will be relatively. Since

theorem 4.2 guarantees that, for large m > M , q(y) will be close to pε(y), we have

that q(y) > 0 for all large m > M with increasing probability. In this situation,

theorem 4.3 guarantees that the KMP will converge to the posterior of interest.

However, consider the case when the simulator is ill-designed to recreate y such

that the true marginal likelihood pε(y) ≈ 0 is small. As q(y) tends to pε(y) ≈ 0

due to theorem 4.2, it may struggle to always stay strictly positive even for large

m > M since it is stochastically converging to approximately zero. In this case,

convergence is difficult since the simulator was ill-designed. However, by learning

ε through maximizing q(y), we adapt the threshold ε to make pε(y) as high as

possible, leading to a more stable posterior pε(θ|y) for the KMP to converge to.

Constructed from the KML, the KMP is also a surrogate density, although it is

normalized. While the KMP is useful for finding maximum a posteriori (MAP)

solutions and visualizing posterior uncertainties, we cannot directly sample from

a surrogate density that is possibly non-positive. To address this, we leverage the

fact that conditional distributions encoded by general CMEs can still be super-

sampled with kernel herding [Chen et al., 2010]. Although marginal mean em-

beddings are strictly positive for strictly positive kernels, when they are estimated

from empirical CMEs, the resulting mean embedding may not be strictly positive

[Song et al., 2009]. Despite this, kernel herding can still obtain super-samples

from CME estimates which effectively minimizes the MMD discrepancy between

the original CME estimate and the new embedding formed from super-samples.

This idea has been used to sample from conditional distributions through its em-

pirical CME representation in kernel Monte Carlo filter (KMCF) [Kanagawa et al.,

2016] and KR-ABC [Kajihara et al., 2018]. Furthermore, super-samples are more

informative than random samples, in the sense that empirical expectations under

super-samples can potentially converge faster at O(S−1) for S samples instead of

O(S−
1
2 ) for random samples.

Motivated by this, we now define an analogous form of mean embeddings for

surrogate densities. Specifically, we define the kernel means posterior embedding

(KMPE), the mean embedding of the KMP, as µ̄Θ|Y=y(θ?) :=
∫
ϑ
`(θ,θ?)q(θ|y)dθ.

This becomes

µ̄Θ|Y=y(θ?) =
1

q(y)

m∑
j=1

vj(y)h(θj,θ
?), (4.9)

where h(θ,θ?) :=
∫
ϑ
`(θ, θ̃)`(θ̃,θ?)p(θ̃)dθ̃. Importantly, as KMPE is constructed

from the CME used to form KML, it converges in RKHS norm at the same rate.
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Theorem 4.4. Assume `(θ, ·) ∈ image(CΘΘ) and that there exists δ > 0 such

that q(y) ≥ δ for all m ≥ M where M ∈ N+. The kernel means posterior embed-

ding (KMPE) µ̄Θ|Y=y converges in RKHS norm to the posterior mean embedding

µΘ|Y=y at rate Op((mλ)−
1
2 + λ

1
2 ).

Note that we accent the KMPE with a bar to emphasize and distinguish it from

the true posterior mean embedding µΘ|Y=y(θ?) :=
∫
ϑ
`(θ,θ?)pε(θ|y)dθ.

If we choose ` to be an anisotropic Gaussian kernel with length scales β = {βd}Dd=1,

h exhibits the following closed-form under anisotropic Gaussian priors,

h(θ,θ?) =
D∏
d=1

sd
σd

exp

[
− 1

2s2
d

(
ad − b2

d

)]
, (4.10)

where ad := (θ2
d +θ?d

2 +γ2
dµ

2
d)/(2+γ2

d), bd := (θd+θ?d +γ2
dµd)/(2+γ2

d), γ
2
d := β2

d/σ
2
d

and s−2
d := 2β−2

d + σ−2
d . For general non-Gaussian kernels and priors, h can be

approximated as

h̃(θ,θ?) =
1

T

T∑
t=1

`(θ, θ̃t)`(θ̃t,θ
?) =

1

T
L̃L̃?. (4.11)

In this case, the KMPE can be approximated by

µ̃Θ|Y=y(θ?) =
1

q̃(y)

m∑
j=1

vj(y)h̃(θj,θ
?) =

v(y)Th(θ?)

v(y)T µ̃Θ

=
v(y)TL`(θ?)

v(y)T L̃1T
, (4.12)

where h(θ?) := {h̃(θj,θ
?)}mj=1 and `(θ?) := {`(θj,θ?)}mj=1.

The KMP q(·|y) is bounded and normalized but potentially non-positive. Conse-

quently, it can be seen as a surrogate density corresponding to a signed measure.

This suggests that the map q(·|y) 7→ µ̄Θ|Y=y is injective for characteristic kernels

`, analogous to mean embeddings [Sriperumbudur et al., 2011]. Furthermore, as

the integral (4.9) is a linear operator on `(θ?, ·), the surrogate posterior mean em-

bedding µ̄Θ|Y=y ∈ H` is in the RKHS of `. With a surrogate embedding that is

injective to our surrogate posterior and in the RKHS, we can apply kernel herd-

ing [Chen et al., 2010] on µ̃Θ|Y=y (4.9) using kernel ` to obtain S super-samples

{θ̂s}Ss=1 from the surrogate density q(θ|y). That is, for each s ∈ [S], the samples

are obtained by

θ̂s = arg max
θ∈ϑ

µ̃Θ|Y=y(θ)− 1

s

s−1∑
s′=1

`(θ̂s′ ,θ). (4.13)

The inference algorithm is presented in algorithm 3.
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4.4 Theoretical Guarantees on Convergence

We provide theoretical guarantees that establish convergence properties of the

kernel embedding likelihood-free inference (KELFI) framework. Section 4.4.1 be-

gins by summarizing the properties of kernels used in KELFI and introducing

relevant quantities. Sections 4.4.2 and 4.4.3 provide an overview of conditional

mean embeddings (CMEs) and their empirical estimates respectively in the context

of KELFI. Section 4.4.4 establishes general convergence theorems for estimators

based on the CME. Finally, using these results, we prove convergence guarantees

for the kernel means likelihood (KML), marginal kernel means likelihood (MKML),

kernel means posterior (KMP), and kernel means posterior embedding (KMPE)

in sections 4.4.5, 4.4.6, 4.4.7 and 4.4.8 respectively.

4.4.1 Kernel Properties

The KELFI framework uses a data kernel k : D×D → R where X ,Y ⊆ D. We do

not assume that X and Y are necessarily the same. For example, it is possible to

record an observation y in which the simulator p(x|θ) can never generate or fully

recover, such as when X ⊂ Y . Conversely, it is also possible that the simulator

p(x|θ) can generate a larger variety of simulations x than that is possible to

observe from the actual data generation process, such as when Y ⊂ X . It can also

be neither of such cases such as when X an Y only have some overlap. However,

since we assume X ,Y ⊆ D, the kernel k is able to measure the similarity between

simulated data x ∈ X ⊆ D and observed data y ∈ Y ⊆ D.

The KELFI framework employs bounded symmetric positive definite kernels ` and

k. Because they are bounded, we can explicitly denote the following upper bounds

to their RKHS norm,

¯̀ := sup
θ∈ϑ
‖`(θ, ·)‖H` = sup

θ∈ϑ

√
`(θ,θ), (4.14)

k̄ := sup
d∈D
‖k(d, ·)‖Hk = sup

d∈D

√
k(d,d). (4.15)

When ` and k are stationary, we have ¯̀=
√
`(0,0) and k̄ =

√
k(0,0).

In the KELFI framework, we first select the ε-kernel κε. Based on this the choice

of the ε-kernel, we then select the kernel k to satisfy

κε(y,x) = cεk(y,x), (4.16)

where cε > 0 is a scaling constant to ensure that κε(y,x) = pε(y|x) is a normalized

density on Y . In contrast, the kernel k has no such restriction. Since it is a scaled
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version of k, κε is also bounded symmetric positive definite as a function of x and

y. In this way, κε(d, ·) ∈ Hk is always in the RKHS Hk characterized by k for all

d ∈ D. As a consequence, ε is also a hyperparameter of k, although this is not

explicitly notated for brevity.

Since y ∈ Y ⊆ D, we have κε(y, ·) ∈ Hk. We can then find its RKHS norm,

‖κε(y, ·)‖Hk = cε‖k(y, ·)‖Hk = cε
√
k(y,y) =

√
cε
√
cεk(y,y) =

√
cε
√
κε(y,y),

(4.17)

which is different to ‖κε(y, ·)‖Hκε =
√
κε(y,y). Therefore, while the KELFI al-

gorithm only requires κε to be specified and k is not explicitly used, this subtle

difference is a reminder that k is the underlying kernel that defines the RKHS,

not κε. As a consequence, we have that the upper bound to the RKHS norm of κε
satisfies

κ̄ε := sup
d∈D
‖κε(d, ·)‖Hk =

√
cε sup

d∈D

√
κε(d,d). (4.18)

Furthermore, if κε is stationary, then κε(d,d) = κε(0,0) for all d ∈ D. A

typical example is the Gaussian density κε(y,x) = N (y; x, ε2I). In this case,

cε = 1/(
√

2πε)n and κε(y,y) = 1/(
√

2πε)n are the same, and thus ‖κε(y, ·)‖Hk =

1/(
√

2πε)n = cε. The corresponding kernel k is the isotropic Gaussian kernel.

When D = Rn, the most commonly used kernel for the KELFI framework is

the anisotropic Gaussian kernel where each dimension uses a potentially different

length scale σi. When its length scales are learned via some hyperparameter

learning algorithm, it is also referred to as the ARD kernel. This kernel has the

following form,

k(x,x′) = exp

(
− 1

2

n∑
i=1

(xi − x′i
σi

)2
)
. (4.19)

Since κε(y,x) = cεk(y,x), this means that the length scales are simply the ABC

tolerance σi = εi for i ∈ [n], and that there can be a separate tolerance for each

dimension of the data or summary statistic. Similarly, when ϑ = RD, we also often

employ the ARD kernel for `, but we use βd, d ∈ [D], to denote the length scales.

4.4.2 Conditional Mean Embedding

To construct a conditional mean operator UX|Θ corresponding to the distribution

p(x|θ), we first choose a kernel ` : ϑ × ϑ → R for domain ϑ and another kernel

k : D ×D → R for domain D. These kernels ` and k each describe how similarity

is measured within their respective domains, and are bounded symmetric positive

definite and characteristic such that they uniquely define the RKHS H` and Hk.
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The conditional mean operator UX|Θ : H` → Hk is defined by the equation

µX|Θ=θ = UX|Θ`(θ, ·), where µX|Θ=θ is the CME defined by

µX|Θ=θ := E[k(X, ·)|Θ = θ]. (4.20)

In this sense, UX|Θ sweeps out a family of CMEs µX|Θ=θ ∈ Hk, each indexed by

θ ∈ ϑ.

We then define cross covariance operators CXΘ := E[k(X, ·)⊗ `(Θ, ·)] : H` → Hk

and CΘΘ := E[`(Θ, ·) ⊗ `(Θ, ·)] : H` → H`. Alternatively, they can be seen as

elements within the tensor product space CXΘ ∈ Hk ⊗ H` and CΘΘ ∈ H` ⊗ H`.

That is, they are second order mean embeddings.

Under the assumption that `(θ, ·) ∈ image(CΘΘ), it can be shown that UX|Θ =

CXΘ(CΘΘ)−1. While this assumption is satisfied for finite domains ϑ with a char-

acteristic kernel `, it does not necessarily hold when ϑ is a continuous domain

[Fukumizu et al., 2004]. Instead, in this case CXΘ(CΘΘ)−1 becomes only an ap-

proximation to UX|Θ, and we instead regularize the inversion with a regularization

hyperparameter λ ≥ 0 and use UX|Θ = CXΘ(CΘΘ + λI)−1, which also serves to

avoid overfitting [Song et al., 2013]. This relaxation can be applied to all subse-

quent results and theorems.

For any function f ∈ Hk, the conditional expectation of f under p(x|θ), or g(θ) :=

E[f(X)|Θ = θ], can be expressed by the inner product g(θ) := 〈f, µX|Θ=θ〉Hk by

using the CME µX|Θ=θ.

4.4.3 Empirical Conditional Mean Embedding

Suppose {θj,xj} ∼ p(x|θ)π(θ) are iid across j ∈ [m]. The conditional mean

operator UX|Θ is estimated by

ÛX|Θ = Φ(L+mλI)−1ΨT , (4.21)

where Φ :=
[
k(x1, ·) · · · k(xm, ·)

]
, Ψ :=

[
`(θ1, ·) · · · `(θm, ·)

]
, and L :=

{`(θi,θj)}mi,j=1. The CME can then be estimated by

µ̂X|Θ=θ = ÛX|Θ`(θ, ·) = Φ(L+mλI)−1`(θ) (4.22)

where `(θ) := {`(θj,θ)}mj=1 [Song et al., 2009].

For any function f ∈ Hk, the conditional expectation of f under p(x|θ), or g(θ) :=

E[f(X)|Θ = θ], can be approximated by the inner product ĝ(θ) := 〈f, µ̂X|Θ=θ〉Hk
by using the empirical CME µ̂X|Θ=θ. Letting f := {f(xj)}mj=1, this approximation
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admits the following form,

ĝ(θ) = fT (L+mλI)−1`(θ). (4.23)

Importantly, µ̂X|Θ=θ is estimated from joint samples {θj,xj}mj=1, even though it

is encoding the corresponding conditional distribution p(x|θ). It is this fact that

allows for an arbitrary choice π(θ) on the marginal distribution of Θ, which does

not necessarily need to be the same as p(θ).

Under the assumption that `(θ, ·) ∈ image(CΘΘ), the empirical CME µ̂X|Θ=θ

converges to the true CME µX|Θ=θ in RKHS norm at rate Op((mλ)−
1
2 +λ

1
2 ) [Song

et al., 2009, Theorem 6]. That is,

∀θ ∈ ϑ, ∀ε > 0, ∃Mε > 0 s.t.

P
[∥∥µ̂X|Θ=θ − µX|Θ=θ

∥∥
Hk

> Mε

(
(mλ)−

1
2 + λ

1
2

)]
< ε.

(4.24)

Consequently, the empirical CME converges at rate Op(m
− 1

4 ) if λ is chosen to

decay at rate Op(m
− 1

2 ), and often better convergence rates can be achieved under

appropriate assumptions on p(x|θ) [Song et al., 2013]. Again, the regularization

hyperparameter λ relaxes the assumption that `(θ, ·) ∈ image(CΘΘ).

Finally, since µ̂X|Θ=θ = ÛX|Θ`(θ, ·) convergences to µX|Θ=θ = UX|Θ`(θ, ·) in RKHS

norm at rate Op((mλ)−
1
2 + λ

1
2 ) for all θ ∈ ϑ and `(θ, ·) does not depend on m, we

also have that ÛX|Θ converges to UX|Θ in HS norm at the same rate. That is,

∀ε > 0, ∃Mε > 0 s.t.

P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS

> Mε

(
(mλ)−

1
2 + λ

1
2

)]
< ε.

(4.25)

4.4.4 General Convergence Theorems

We now establish some general convergence theorems for estimators based on inner

products with the CME. The aim is to provide a sense of the stochastic convergence

of any estimator â to its true quantity a with respect to some metric d(â, a). We

do this by showing that either ‖µ̂X|Θ=θ − µX|Θ=θ‖Hk or ‖ÛX|Θ − UX|Θ‖HS is an

upper bound of d(â, a) up to a scaling constant.

Lemma 4.1. Suppose that `(θ, ·) ∈ image(CΘΘ) and that there exists 0 ≤ γ <∞
such that for some estimator â, target a, and metric d(â, a),

d(â, a) ≤ γ
∥∥ÛX|Θ − UX|Θ

∥∥
HS
, (4.26)

then the estimator â converges to the target a with respect to the metric d at rate

Op((mλ)−
1
2 + λ

1
2 ).
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Proof. Suppose that there exists 0 ≤ γ <∞ such that (4.26) is satisfied. That is,

the inequality (4.26) holds for all possible data observations {θj,xj}mj=1. For any

constant C, the implication statement
∥∥ÛX|Θ − UX|Θ

∥∥
HS
≤ C =⇒ d(â, a) ≤ Cγ

holds for all possible observation events ω ∈ Ω. Writing this explicitly in event

space translates this to a statement of probability inequality,

{ω ∈ Ω :
∥∥ÛX|Θ − UX|Θ

∥∥
HS
≤ C} ⊆ {ω ∈ Ω : d(â, a) ≤ Cγ}

=⇒ P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS
≤ C

]
≤ P

[
d(â, a) ≤ Cγ

]
.

(4.27)

Since we assume that `(θ, ·) ∈ image(CΘΘ), statement (4.24) is valid. By let-

ting C = Mε((mλ)−
1
2 + λ

1
2 ) in (4.27), we immediately have that the probability

inequality in statement (4.25) is also true if we replace
∥∥ÛX|Θ − UX|Θ

∥∥
HS

with

d(â, a) and Mε with γMε,

P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS

> Mε

(
(mλ)−

1
2 + λ

1
2

)]
< ε

=⇒ 1− P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS
≤Mε

(
(mλ)−

1
2 + λ

1
2

)]
< ε

=⇒ P
[∥∥ÛX|Θ − UX|Θ

∥∥
HS
≤Mε

(
(mλ)−

1
2 + λ

1
2

)]
> 1− ε

=⇒ P
[
d(â, a) ≤ γMε

(
(mλ)−

1
2 + λ

1
2

)]
> 1− ε

=⇒ 1− P
[
d(â, a) ≤ γMε

(
(mλ)−

1
2 + λ

1
2

)]
< ε

=⇒ P
[
d(â, a) > γMε

(
(mλ)−

1
2 + λ

1
2

)]
< ε,

(4.28)

where we employed statement (4.27) between the third and fourth line for C =

Mε((mλ)−
1
2 + λ

1
2 ). Therefore, since Mε is arbitrary, define M̃ε := γMε so that the

following statement holds,

∀ε > 0, ∃M̃ε > 0 s.t. P
[
d(â, a) > M̃ε

(
(mλ)−

1
2 + λ

1
2

)]
< ε. (4.29)

In other words, the estimator â stochastically converges to a at a rate of at least

Op((nλ)−
1
2 + λ

1
2 ) with respect to the metric d.

Lemma 4.2. Suppose that `(θ, ·) ∈ image(CΘΘ) and that there exists 0 ≤ γ <∞
such that for some estimator â, target a, and metric d(â, a),

d(â, a) ≤ γ
∥∥µ̂X|Θ=θ − µX|Θ=θ

∥∥
Hk
, (4.30)

then the estimator â converges to the target a with respect to the metric d at rate

Op((mλ)−
1
2 + λ

1
2 ).

Proof. The proof is identical to the proof for lemma 4.1, where
∥∥ÛX|Θ−UX|Θ

∥∥
HS

is replaced with
∥∥µ̂X|Θ=θ−µX|Θ=θ

∥∥
Hk

throughout. Alternatively, since
∥∥µ̂X|Θ=θ−

µX|Θ=θ

∥∥
Hk

=
∥∥(ÛX|Θ−UX|Θ)`(θ, ·)

∥∥
Hk
≤
∥∥ÛX|Θ−UX|Θ

∥∥
HS

∥∥`(θ, ·)∥∥H` =
∥∥ÛX|Θ−
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UX|Θ
∥∥
HS

√
`(θ,θ), ∀θ ∈ ϑ, we have that d(â, a) ≤ γ`(θ,θ)

∥∥ÛX|Θ − UX|Θ
∥∥
HS
≤

γ(supθ∈ϑ
√
`(θ,θ))

∥∥ÛX|Θ − UX|Θ
∥∥
HS

= γ ¯̀
∥∥ÛX|Θ − UX|Θ

∥∥
HS

, ∀θ ∈ ϑ. Since γ ¯̀ is

finite and does not depend on m, we apply lemma 4.1 to arrive at lemma 4.2.

With lemmas 4.1 and 4.2, we are now equipped to prove the convergence of various

estimators based on CMEs.

In all subsequent proofs, recall that the approximate surrogate densities q depend

on m and ε, as well as other kernel and regularization hyperparameters, even

though this is not explicitly notated.

4.4.5 Convergence of Kernel Means Likelihood

Proof of Theorem 4.1. Consider the absolute difference between the KML q(y|θ)

and the likelihood pε(y|θ),

|q(y|θ)− pε(y|θ))| =|〈κε(y, ·), µ̂X|Θ=θ〉Hk − 〈κε(y, ·), µX|Θ=θ〉Hk |
=|〈κε(y, ·), µ̂X|Θ=θ − µX|Θ=θ〉Hk |
≤‖κε(y, ·)‖Hk‖µ̂X|Θ=θ − µX|Θ=θ‖Hk
≤κ̄ε‖µ̂X|Θ=θ − µX|Θ=θ‖Hk
=κ̄ε‖(ÛX|Θ − UX|Θ)`(θ, ·)‖Hk
≤κ̄ε

∥∥ÛX|Θ − UX|Θ
∥∥
HS

∥∥`(θ, ·)∥∥H`
=κ̄ε

√
`(θ,θ)

∥∥ÛX|Θ − UX|Θ
∥∥
HS

≤κ̄ε ¯̀
∥∥ÛX|Θ − UX|Θ

∥∥
HS
.

(4.31)

Since γ = κ̄ε ¯̀ is independent of m, we apply lemma 4.1 to establish the conver-

gence. Since this upper bound does not depend on θ ∈ ϑ or y ∈ Y and the metric

is the absolute difference, this convergence is uniform as a function of both θ ∈ ϑ
and y ∈ Y .

Alternatively, convergence guarantees for the KML can be established by its con-

nection to the form of a Gaussian process regressor (GPR), leveraging frameworks

and properties from a regression perspective.

4.4.6 Convergence of Marginal Kernel Means Likelihood

Proof of Theorem 4.2. We begin by writing the marginalization as an expecta-

tion over p(θ). This gives us q(y) :=
∫
ϑ
q(y|θ)p(θ)dθ = E[q(y|Θ)] and pε(y) :=
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∫
ϑ
pε(y|θ)p(θ)dθ = E[pε(y|Θ)]. Consider the absolute difference between the

MKML q(y) and the marginal likelihood pε(y),

|q(y)− pε(y)| = |E[q(y|Θ)− p(y|Θ)]|
≤ E[|q(y|Θ)− p(y|Θ)|]
≤ κ̄εE[‖µ̂X|Θ=Θ − µX|Θ=Θ‖Hk ]
= κ̄εE[‖(ÛX|Θ − UX|Θ)`(Θ, ·)‖Hk ]
≤ κ̄εE[‖ÛX|Θ − UX|Θ‖HS‖`(Θ, ·)‖H` ]

= κ̄εE[‖ÛX|Θ − UX|Θ‖HS
√
`(Θ,Θ)]

= κ̄εE[
√
`(Θ,Θ)]‖ÛX|Θ − UX|Θ‖HS

≤ κ̄εE[¯̀]‖ÛX|Θ − UX|Θ‖HS
= κ̄ε ¯̀‖ÛX|Θ − UX|Θ‖HS

(4.32)

Since γ = κ̄ε ¯̀ is independent of m, we apply lemma 4.1 to establish the conver-

gence. Since this upper bound does not depend on y ∈ Y and the metric is the

absolute difference, this convergence is uniform as a function of y ∈ Y .

4.4.7 Convergence of Kernel Means Posterior

Proof of Theorem 4.3. Consider the density ratio between the approximate and

true densities for the likelihood and its absolute difference to unity,∣∣∣∣ q(y|θ)

pε(y|θ)
− 1

∣∣∣∣ ≤ 1

pε(y|θ)

∣∣q(y|θ)− pε(y|θ)
∣∣

≤ κ̄ε ¯̀

pε(y|θ)

∥∥ÛX|Θ − UX|Θ
∥∥
HS
.

(4.33)

Similarly, consider the density ratio between the approximate and true densities

for the marginal likelihood and its absolute difference to unity,∣∣∣∣ q(y)

pε(y)
− 1

∣∣∣∣ ≤ 1

pε(y)

∣∣q(y)− pε(y)
∣∣

≤ κ̄ε ¯̀

pε(y)

∥∥ÛX|Θ − UX|Θ
∥∥
HS
.

(4.34)
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Now, consider the absolute difference between the KMP q(θ|y) and the posterior

pε(θ|y) for all m > M .∣∣∣q(θ|y)− pε(θ|y)
∣∣∣

=

∣∣∣∣q(y|θ)

q(y)
− pε(y|θ)

pε(y)

∣∣∣∣p(θ)

=

∣∣∣∣ q(y|θ)

pε(y|θ)
− q(y)

pε(y)

∣∣∣∣pε(y|θ)p(θ)

|q(y)|

=

∣∣∣∣( q(y|θ)

pε(y|θ)
− 1
)
−
( q(y)

pε(y)
− 1
)∣∣∣∣pε(y|θ)p(θ)

|q(y)|

≤
(∣∣∣ q(y|θ)

pε(y|θ)
− 1
∣∣∣+
∣∣∣ q(y)

pε(y)
− 1
∣∣∣)pε(y|θ)p(θ)

|q(y)|

≤
(

κ̄ε ¯̀

pε(y|θ)

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

+
κ̄ε ¯̀

pε(y)

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

)
pε(y|θ)p(θ)

|q(y)|

≤
(
κ̄ε ¯̀p(θ)

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

+ κ̄ε ¯̀pε(θ|y)
∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

)
1

|q(y)|

≤κ̄ε ¯̀
(
p(θ) + pε(θ|y)

)∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

1

|q(y)|

≤
κ̄ε ¯̀
(
p(θ) + pε(θ|y)

)
δ

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS
.

(4.35)

Since γ = κ̄ε ¯̀

δ

(
p(θ) + pε(θ|y)

)
is independent of m and the upper bound holds for

all m > M , we apply lemma 4.1 to establish the convergence. Since this upper

bound does depend on θ ∈ ϑ and y ∈ Y and the metric is the absolute difference,

this convergence is pointwise as a function of θ ∈ ϑ and y ∈ Y .

Furthermore, if p̄Θ := supθ∈ϑ p(θ) <∞ and p̄Y|Θ := supθ∈ϑ pε(y|θ) <∞, then

p(θ) + pε(θ|y) ≤ sup
θ∈ϑ

(
p(θ) + pε(θ|y)

)
≤ sup

θ∈ϑ
p(θ) + sup

θ∈ϑ
pε(θ|y)

≤ sup
θ∈ϑ

p(θ) +
supθ∈ϑ pε(y|θ) supθ∈ϑ p(θ)

pε(y)

= p̄Θ +
p̄Y|Θp̄Θ

pε(y)
.

(4.36)

So,
∣∣∣q(θ|y)−pε(θ|y)

∣∣∣ ≤ κ̄ε ¯̀

δ

(
p̄Θ+

p̄Y|Θp̄Θ
pε(y)

)∥∥∥ÛX|Θ−UX|Θ

∥∥∥
HS

. Since the upper bound

does not depend on θ ∈ ϑ, the convergence is uniform as a function of θ ∈ ϑ.

Similarly, if p̄Θ|Y := supy∈Y pε(θ|y) < ∞, then
∣∣∣q(θ|y) − pε(θ|y)

∣∣∣ ≤ κ̄ε ¯̀

δ

(
p(θ) +

p̄Θ|Y
)∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

. Since the upper bound does not depend on y ∈ Y , the

convergence is uniform as a function of y ∈ Y .
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4.4.8 Convergence of Kernel Means Posterior Embedding

Proof of Theorem 4.4. Since ` is a bounded kernel, let ¯̀̄ := supθ∈ϑ supθ′∈ϑ `(θ,θ
′) >

0. Note that this is not necessarily the same as ¯̀ := supθ∈ϑ `(θ,θ). Consider the

difference between KMPE µ̄Θ|Y=y and µΘ|Y=y for all m > M in RKHS norm,∥∥∥∥µ̄Θ|Y=y − µΘ|Y=y

∥∥∥∥2

H`

=

∥∥∥∥∫
ϑ

`(θ, ·)q(θ|y)dθ −
∫
ϑ

`(θ, ·)pε(θ|y)dθ

∥∥∥∥2

H`

=

∥∥∥∥∫
ϑ

`(θ, ·)
(
q(θ|y)− pε(θ|y)

)
dθ

∥∥∥∥2

H`

=

〈∫
ϑ

`(θ, ·)
(
q(θ|y)− pε(θ|y)

)
dθ,

∫
ϑ

`(θ′, ·)
(
q(θ′|y)− pε(θ′|y)

)
dθ′
〉
H`

=

∫
ϑ

∫
ϑ

〈`(θ, ·), `(θ′, ·)〉H`
(
q(θ|y)− pε(θ|y)

)(
q(θ′|y)− pε(θ′|y)

)
dθdθ′

=

∫
ϑ

∫
ϑ

`(θ,θ′)
(
q(θ|y)− pε(θ|y)

)(
q(θ′|y)− pε(θ′|y)

)
dθdθ′

=

∣∣∣∣ ∫
ϑ

∫
ϑ

`(θ,θ′)
(
q(θ|y)− pε(θ|y)

)(
q(θ′|y)− pε(θ′|y)

)
dθdθ′

∣∣∣∣
≤
∫
ϑ

∫
ϑ

∣∣∣`(θ,θ′)∣∣∣∣∣∣q(θ|y)− pε(θ|y)
∣∣∣∣∣∣q(θ′|y)− pε(θ′|y)

∣∣∣dθdθ′
≤
∫
ϑ

∫
ϑ

¯̀̄2
∣∣∣q(θ|y)− pε(θ|y)

∣∣∣∣∣∣q(θ′|y)− pε(θ′|y)
∣∣∣dθdθ′

= ¯̀̄2

∫
ϑ

∣∣∣q(θ|y)− pε(θ|y)
∣∣∣dθ ∫

ϑ

∣∣∣q(θ′|y)− pε(θ′|y)
∣∣∣dθ′

= ¯̀̄2

(∫
ϑ

∣∣∣q(θ|y)− pε(θ|y)
∣∣∣dθ)2

.

(4.37)

We now employ inequality (4.35) that was derived within the proof of theorem 4.3,∥∥∥µ̄Θ|Y=y − µΘ|Y=y

∥∥∥
H`
≤ ¯̀̄

∫
ϑ

∣∣∣q(θ|y)− pε(θ|y)
∣∣∣dθ

≤ ¯̀̄
∫
ϑ

κ̄ε ¯̀
(
p(θ) + pε(θ|y)

)
δ

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS
dθ

= ¯̀̄
(∫

ϑ

(
p(θ) + pε(θ|y)

)
dθ

)
κ̄ε ¯̀

δ

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS

=
2κ̄ε ¯̀̀̄̄

δ

∥∥∥ÛX|Θ − UX|Θ

∥∥∥
HS
.

(4.38)

Since γ = 2κ̄ε ¯̀̀̄̄

δ
is independent of m and the upper bound holds for all m > M , we

apply lemma 4.1 to establish the convergence under the RKHS norm.
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4.5 Spatio-Temporal Kernel Means Likelihood

We specifically address the scenario for performing LFI on spatio-temporal data

using KELFI. A subset of this scenario is the case where the data comes in the form

of a time series. While this is a common setting for LFI problems, the sequential

or spatially ordered nature of spatio-temporal data is rarely leveraged in standard

LFI methods. This is because spatio-temporal data are often still summarized

into summary statistics before the LFI algorithm is applied, meaning that the

raw sequential and spatial data points were not fully utilized. The advantage of

using summary statistics is that it reduces the problem down to the standard case.

However, these summary statistics are rarely sufficient, as sufficient statistics can

be extremely difficult to design or learn even from expert knowledge due to the

very lack of knowledge of its generating distribution. Thanks to the flexible and

generalizable framework KELFI provides, in this section we design suitable forms

of the KML for applying KELFI in the spatio-temporal domain.

In general, the approach we will present applies to spatio-temporal data formed

from observing any stochastic random field with multivariate inputs. However,

for the purpose of simplicity and clarity, we will notate inputs with names that

resonate with time, so that the resulting data can be intuitively understood as

analogous to a time series.

Suppose our observed spatio-temporal data comes in the form of {ti, yi}ni=1 and

a simulation of such data comes in the form of {si, xi}n
′
i=1. We will assume that

xi, yi ∈ R for simplicity, although this framework can be extended for multivariate

outputs. In this case, ti and si can be time stamps, in which they are scalar values,

or spatio-temporal locations, in which they are multivariate inputs. In either case,

we will denote the space they lie in as T = S. We will denote y = {yi}ni=1,

x = {xi}n
′
i=1, t = {ti}ni=1, and s = {si}n

′
i=1 (not to be confused with summary

statistics, which is not required here).

We first define a positive definite kernel h : T × T → R to measure the similarity

between the spatio-temporal inputs. Then, we construct an ε-kernel by using the

full predictive distribution of a GPR,

κε((t,y), (s,x)) = p(y|x, t, s)

= N (y;HT
st(Hss + ε2In′)

−1x, Htt + ε2In −HT
st(Hss + ε2In′)

−1Hst).
(4.39)

where Hs,t = {H(si, tj)}n
′,n
i=1,j=1, Hs,s = {H(si, sj)}n

′,n′

i=1,j=1, Ht,t = {H(ti, tj)}n,ni=1,j=1.

That is, p(y|x, t, s) is the full predictive distribution of a GPR trained on {si, xi}n
′
i=1

and evaluated at the query points {ti, yi}ni=1. The derivation of this full predictive

distribution is given in Rasmussen and Williams [2006].
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This was a modeling choice to leverage the spatio-temporal relationship between

each data point. So, {si, xi}n
′
i=1 and {ti, yi}ni=1 are modeled as noisy realizations,

with noise level ε, from a GP. The ε-kernel then measures the likelihood of observ-

ing our observed spatio-temporal data {ti, yi}ni=1 given simulation data {si, xi}n
′
i=1.

With the above ε-kernel, the new KML surrogate is

q(y|t,θ) = κε(t,y)T (L+mλI)−1`(θ), (4.40)

where κε(t,y) := {κε((t,y), (sj,xj))}mj=1. We call this the spatio-temporal kernel

means likelihood (ST-KML).

Notice that we use GPs in a very different way to other ABC approaches that

use GPs. For example, Gaussian process surrogate ABC (GPS-ABC) [Meeds

and Welling, 2014] models the generation process of summary statistics from the

simulator and summary operation as a GPR. The input to the GPR in GPS-ABC is

a parameter θ ∈ ϑ, whereas the input to the GPR in ST-KML is a spatio-temporal

coordinate t ∈ T or s ∈ S. In GPS-ABC, the GPR is trained on simulated pairs

of {θj,xj}mj=1, and the predictive distribution is evaluated at {θi,y}nqi=1 with any

query parameters {θi}nqi=1 at the same observed data y to evaluate the approximate

likelihood. Furthermore, each index correspond to the summary statistic of a whole

dataset. This is in contrast to the GPR in ST-KML. In the ε-kernel of the ST-

KML, the GPR is trained on {si, xi}n
′
i=1 and the predictive distribution is evaluated

at the observed spatio-temporal data {ti, yi}ni=1. Here, each index correspond to

a datapoint. The relationship across datasets is then handled by the CME in the

overall KML.

On the other hand, the GPR in Gaussian process accelerated ABC (GPA-ABC)

[Wilkinson, 2014] treats the log likelihood density directly as targets, instead of

summary statistics. Again, the input to their GPR is a parameter θ ∈ ϑ.

Furthermore, unlike GPS-ABC where the overall likelihood of summary statistics

given parameters is assumed to be Gaussian, in ST-KML the Gaussian assumption

from the GPR is only on the residual process from the latent process to simulated

processes x(s) or observed processes y(t), and particular forms for the overall

likelihood is not assumed.

This is the first work in our knowledge that specifically address spatio-temporal

data by defining a GP-based ε-kernel to capture spatio-temporal. Specifically, we

leverage the smoothness properties in such a data, where yi and yj would be more

related if ti and tj are close.

It is worthwhile to point out again that the GPR for the ε-kernel and the CME

for the overall KML are modeling entirely different relationships between different

pairs of spaces. The former models relationships from T = S to Y = X . The

latter models the relationship from ϑ to X .
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4.6 iid Kernel Means Likelihood

We specifically address the scenario for performing LFI on iid data using KELFI.

Similar to the motivation behind the construction of ST-KML, ε-kernels that op-

erate on the raw data directly instead of on the summary statistics can leverage

more information for the KML approximation. In the setting where simulation

data is limited, this extra information can make noticeable improvements to the

KML approximation such that more accurate posterior inference can be achieved.

Importantly, it is worthwhile to point out that even under the scenario where a

sufficient statistic is available for iid data, the KML still benefits from an ε-kernel

that operate on the raw data directly. Recall that a statistic is sufficient with

respect to a statistical model and its associated unknown parameter if “no other

statistic that can be calculated from the same sample provides any additional

information as to the value of the parameter” [Fisher, 1922]. In our setting, the

statistical model is the data likelihood, which in the LFI setting is assumed to

be unavailable or intractable. While the statistic is sufficient with respect to the

true likelihood, it may not be necessarily sufficient to likelihood approximations,

including the KML. Since we are performing inference using the KML, this means

that we may still gain extra information if we use the original raw data.

In order to make use of the full raw iid dataset, we can construct ε-kernels

through the MMD between empirical distributions described by the datasets.

One common example is the unnormalized ε-kernel κε,α(y,x) ∝ kε,α(y,x) =

exp
(
− 1

2ε2
‖µ̂Y − µ̂X‖2

Hk

)
, where µ̂Y = 1

n

∑n
i=1 k̄α(yi, ·), µ̂X = 1

n

∑n
i=1 k̄α(xi, ·) are

empirical mean embeddings of the observed and simulated raw data. Here k̄ is an-

other kernel with hyperparameters α, which can be learned via the MKML. This

was also used in double kernel ABC (K2-ABC) [Park et al., 2016] and distribution

regression ABC (DR-ABC) [Mitrovic et al., 2016] to remove the requirement of

summary statistics. Note that the normalization constant for the density κε,α is

not required as it will be canceled out in the surrogate density for the posterior.

In contrast to the MMD-based ε-kernel, a more direct approach would be to lever-

age the conditional independence of observations yi given simulations xi, which

gives κε(y,x) = pε(y|x) =
∏n

i=1 pε(yi|xi) =
∏n

i=1N (yi;xi, ε
2). On top of the raw

data itself, this has the added advantage of leveraging another crucial information,

which is simply the size of the dataset. With this ε-kernel, the new KML surrogate

is q(y|θ) = κε(y)T (L + mλI)−1`(θ), where κε(y) := {κε(y,xj)}mj=1. We call this

the independent and identically distributed kernel means likelihood (iid-KML).

This can be extended to multivariate data by replacing pε(yi|xi) = N (yi;xi, ε
2)

with pε(yi|xi) = N (yi; xi;E) so that κε(Y,X) =
∏n

i=1 pε(yi|xi), where E is a

noise covariance matrix that can be learned also under the MKML.



Bayesian Conditional Kernel Mean Embeddings for Likelihood-Free Inference 108

4.7 Normalizing Priors

Under certain conditions, we can always transform a particular LFI problem into

another LFI problem that involves a Gaussian or normal prior without loss of

generality. These assumptions are that pΘ(θ) =
∏D

d=1 pΘd(θd) is a continuous PDF

whose entries are independent, and that its inverse marginal CDFs P−1
Θd

exists and

is tractable.

In terms of notation, we denote the parameters as θ = {θd}Dd=1 ∈ ϑ for D param-

eters. For this section only, multiple iid copies will be indexed by a superscript

θ(j) for j ∈ [m]. Hence, the d-th parameter of the j-th parameter values is θ
(j)
d .

For densities, we use the corresponding random variable as the subscript to denote

which distribution we are referring to. For example, we used p(θ) as the shorthand

for the more formal notation of pΘ(θ) in the rest of the paper, but here we will

keep the subscript to make this explicit.

Suppose the original prior pΘ(θ) is not necessarily Gaussian, but satisfies the afore-

mentioned assumptions. Let Z be a random variable of the same dimensionality as

Θ with realization z ∈ Z. Let pZ(z) =
∏D

d=1 pZd(zd), where pZd(zd) = N (zd;µd, σ
2
d)

so that its density is a multivariate anisotropic Gaussian. Convenient choices that

simplify transformations are µd = 0 and σd = σ for all d ∈ [D], although the

general methodology remains.

Below we outline the general procedure for transforming a LFI problem into an-

other LFI problem that involves a Gaussian prior.

1. Generate Gaussian samples z(j) ∼ pZ(z) for j ∈ [m].

2. Convert Gaussian samples z into uniform samples u through u
(j)
d = PZd(z

(j)
d )

for j ∈ [m] and d ∈ [D]. That is, u(j) ∼ U(0, 1)D for j ∈ [m].

3. Convert uniform samples u into prior samples through θ
(j)
d = P−1

Θd
(u

(j)
d )

for j ∈ [m] and d ∈ [D]. The overall forward transformation is T(z) :=

{Td(zd)}Dd=1 where Td(zd) = P−1
Θd

(PZd(zd)). Since P−1
Zd

exists, the inverse

transformation is T−1(θ) = {T−1
d (θd)}Dd=1 where T−1

d (θd) = P−1
Zd

(PΘd(θd)).

Hence, we have θ(j) = T(z(j)) for j ∈ [m].

4. Run simulator at parameter samples x(j) ∼ pX|Θ(·|θ(j)) = pX|Θ(·|T (z(j))) =

pX|Z(·|z(j)). We now have joint samples {z(j),x(j)}mj=1.

5. Use the KELFI framework to approximate the posterior pZ|Y(z|y) using the

simulation pairs {z(j),x(j)}mj=1. Either we obtain the KMP qZ|Y(z|y), or we

obtain KMPE super-samples {ẑs}Ss=1.
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6. If we have samples {ẑs}Ss=1, then to obtain the corresponding samples for

qΘ|Y(θ|y), we simply pass the samples {ẑs}Ss=1 through the transformation

T so that θ̂s = T(ẑs) for s ∈ [S].

7. If we have the KMP, then to obtain the corresponding posterior density

we use the standard change of variable transformation which would yield

qΘ|Y(θ|y) = qZ|Y(T−1(θ)|y)| det JT−1(θ)|. The Jacobian of T−1 is a D ×D
matrix whose (i, j)-th entry is (JT−1(θ))ij :=

∂T−1
i

∂θj
(θ). Since the transfor-

mations of each parameter is done independently from each other, T−1
i does

not depend on θj if i 6= j. Consequently, the Jacobian is diagonal. The

diagonal entries are
∂T−1

i

∂θi
(θi) = ∂

∂θi
P−1
Zi

(PΘi(θi)) = (P−1
Zi

)′(PΘi(θi))pΘi(θi) =

[pZi(P
−1
Zi

(PΘi(θi)))]
−1pΘi(θi) = [pZi(T

−1
i (θi))]

−1pΘi(θi). In the second last

equality we made use of the fact that the computation of the derivative of

the quantile function requires only the knowledge of the density and the

quantile function itself, since (P−1)′(u) = (P ′(P−1(u)))−1. Thus, the de-

terminant of the Jacobian is det JT−1(θ) =
∏d

i=1[pZi(T
−1
i (θi))]

−1pΘi(θi) =

pΘ(θ)
[∏d

i=1 pZi(T
−1
i (θi))

]−1
= pΘ(θ)

[
pZ(T−1(θ))]−1. The change of vari-

able transformation becomes

qΘ|Y(θ|y) = qZ|Y(T−1(θ)|y)
pΘ(θ)

pZ(T−1(θ))
. (4.41)

Finally, the form simplifies when the form of the KMP qZ|Y(T−1(θ)|y) is

substituted back in,

qΘ|Y(θ|y) =
qY|Z(y|T−1(θ))pZ(T−1(θ))

qY(y)

pΘ(θ)

pZ(T−1(θ))

=
qY|Z(y|T−1(θ))pΘ(θ)

qY(y)
.

(4.42)

Note that the MKML qY(y) is still marginalized over the simpler Gaussian

distribution,

qY(y) =

∫
Z
qY|Z(y|z)pZ(z)dz. (4.43)

In this way, we simplify the LFI problem into another LFI problem which involves a

Gaussian prior such that KELFI solutions are closed-form under Gaussian kernels.

Once KELFI solutions have been computed in the new parameter space Z, the

solutions can be easily transformed back into the original parameter space ϑ as

above.

This process is possible since the likelihood is intractable already. Hence, trans-

formations T of variables z into simulator parameters θ can be included as part

of the simulator without changing the nature of the problem.
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If simulation pairs {θ(j),x(j)}mj=1 in the original space are already provided, pa-

rameters θ(j) can be converted into Gaussian variables via z(j) = T−1(θ(j)) for

j ∈ [m] so that the pairs {z(j),x(j)}mj=1 can be used to proceed.

As an extension, instead of transforming the LFI problem with a general contin-

uous prior into one with a Gaussian prior, if the prior is fundamentally multi-

modal, we can also transform it into one with a Gaussian mixture model as the

prior. Since the prior density is a linear combination of Gaussians, all derivations

remain closed-form from a linear combination of the results with each Gaussian

component.

Finally, it is important to recognize that while there is no loss of generality to the

inference problem when performing this prior transform, the transformation do

change the interpretation of the hyperparameters learned with the MKML. Since

the kernel ` is now placed in the Z space, the hyperparameters of ` cannot be

interpreted directly for the original parameter space ϑ unless the transformation

between Z and ϑ is simple enough to translate the interpretation. Nevertheless,

hyperparameters can still be learned by optimizing the MKML.

4.8 Related Work

The simplest ABC algorithm is arguably the rejection ABC (REJ-ABC) sampler

[Pritchard et al., 1999]. It posits a set of prior parameters and rejects those whose

simulations do not match the observations within a fixed threshold ε > 0 under

a distance measure. This can be extremely expensive even for cheap simulators.

Critically, the hyperparameter ε crucially balances accuracy and computational

efficiency and its learning remains to be addressed.

Instead of sampling from the prior, MCMC-ABC and sequential Monte Carlo

ABC (SMC-ABC) sample from proposal distributions iteratively and carefully

accepts or discards each proposal stochastically based on approximate likelihood

ratios [Marjoram et al., 2003, Sisson et al., 2007]. They can however suffer from

slow mixing, where it is difficult to escape a lucky sample with a high likelihood.

They also do not leverage likelihood smoothness and thus require multiple new

simulations every iteration, which are then discarded and may still not result in an

accepted sample. This is because approximations to the likelihood pε(y|θ) (4.2)

rely on empirical means over S simulations for that particular parameter setting

θ, pε(y|θ) ≈ 1
S

∑S
s=1 pε(y|x(s)) = 1

S

∑S
s=1 κε(y,x

(s)) [Andrieu et al., 2009].

Synthetic likelihood ABC (SL-ABC) and adaptive synthetic likelihood ABC (ASL-

ABC) alternatively use Gaussian approximations pε(y|θ) ≈ N (y;µθ,Σθ+ε2I) and

estimate the mean and covariance from simulations [Wood, 2010]. Nevertheless,
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these approaches also require generating S new simulations {x(s)}Ss=1 correspond-

ing to the particular parameter setting θ where the likelihood is queried. Not

only are synthetic likelihoods parametric Gaussian approximations, they also ap-

proximate separately at each θ. In contrast, surrogate likelihood approaches like

KELFI use consistent nonparametric approximations so that (1) only one new

simulation is required at each new parameter θ and (2) likelihood queries do not

need to be at parameters where simulations are available.

Another branch of study include stochastic variational inference (SVI) approaches

to ABC, which treats the likelihood approximation as another source of stochastic-

ity in the stochastic gradient. This includes AV-ABC [Moreno et al., 2016], VBIL

[Tran et al., 2017b], and VBSL [Ong et al., 2018]. In contrast, likelihood-free

variational inference (LFVI) [Tran et al., 2017a] uses density ratio estimation to

approximate the variational objective, emphasizing inference on local latent vari-

ables. Nevertheless, SVI approaches posit parametric approximations that may

have asymptotic bias, and are also harder to implement in practice. In contrast,

nonparametric surrogate approaches like KELFI have asymptotic convergence and

implementations boil down to simple linear algebra.

Kernel-based approaches that leverage likelihood smoothness have been studied

recently to reduce simulation requirements. The philosophy is that simulations

of close-by parameters are informative, thus past results should not be discarded

but remembered, even if this introduces model bias. K-ABC [Nakagome et al.,

2013], KR-ABC [Kajihara et al., 2018], and KBR [Fukumizu et al., 2013] also

employ CMEs to reduce simulation requirements. They differ to KELFI in the

three aspects of model, learning, and inference. (Model) While they build poste-

rior mean embeddings directly, KELFI builds likelihood surrogates first and make

use of the full prior density to further leverage prior information before building

posterior surrogates, which are then embedded into closed-form posterior mean

embeddings. In contrast, the prior only appears as samples from p(θ) in K-ABC,

KR-ABC, and KBR. This both limits the prior knowledge leveraged and prohibit

the use of proposal prior samples. (Learning) KELFI crucially addresses hyper-

parameter learning in reference to the inference problem directly which was not

straightforward previously. (Inference) K-ABC and KBR primarily infer poste-

rior expectations, while KR-ABC produce point estimates. Instead, we design

a posterior sampling algorithm, which subsumes inferring posterior expectation.

We further provide approximate posterior density KMP, which can both produce

point estimates and quantify uncertainty.

As a consequence of theorem 4.4, the KMPE converges at rate Op(m
− 1

4 ) in RKHS

norm if the regularization hyperparameter λ is chosen to decay at rate Op(m
− 1

2 ).

Notably, this is faster than the convergence rate of KBR at Op(m
− 8

27
α) where

0 < α ≤ 1
2
, which also requires further assumptions on cross-covariance operators

and appropriate decays for regularization hyperparameters [Fukumizu et al., 2013].
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Finally, we highlight that hyperparameter learning is a crucial aspect and differ-

entiator of KELFI. This is especially true for learning ε, which tunes the critical

balance between an accurate posterior pε(θ|y) ≈ p0(θ|y) with small ε requiring

high numbers of simulation calls, or a less accurate posterior with large ε relaxing

the number of simulations required. This has been a challenging issue to address in

the ABC literature in reference to the inference problem, even though its selection

is often pivotal to the performance of the algorithm.

In the GP literature, hyperparameter learning through maximum marginal like-

lihood plays an important role in the success of a GPR. GPS-ABC [Meeds and

Welling, 2014] and GPA-ABC [Wilkinson, 2014] model the summary statistics

surface and log likelihood surface respectively via a GP surrogate. In contrast,

the KML model is equivalent to placing a GP surrogate on the likelihood surface

itself. This removes the assumption that summary statistics are independent and

Gaussian distributed as in GPS-ABC. It further avoids the need for a GP prior

with non-zero mean as in GPA-ABC, since likelihoods should revert to zero in the

absence of simulations. In exchange, we lose non-negativity guarantees in the like-

lihood and posterior. We address this by proposing to sample from the equivalent

posterior mean embedding instead.

Importantly, while GPS-ABC and GPA-ABC apply the GP marginal likelihood to

learn their surrogate hyperparameters, it cannot learn ε or other hyperparameters

since they are not part of the surrogate. This is because both approaches maxi-

mize the marginal likelihood for the GPR problem on the their respective target

surfaces, but not the marginal likelihood for the overall inference problem, thus

excluding other hyperparameters in the process.

4.9 Experiments

The goal of the experiments is to demonstrate the inference accuracy of KELFI

under limited simulation budget and the effectiveness of MKML hyperparameter

learning. We begin with isotropic ε and anisotropic β = β0σ, and learn (ε, β0)

by maximizing the MKML (4.5) while keeping λ = 10−3β0 fixed for simplicity.

We use Halton sequences [Halton, 1960] to sample from the proposal prior, which

is set to the original prior π(θ) = p(θ) for simplicity. In all experiments we

found that we did not need to clip the KML or KMP even though they are not

guaranteed a-priori to be strictly positive. This is because we used an universal

kernel such as a Gaussian kernel on both ϑ and D so that their RKHS is dense in

their respective L2 spaces [Carmeli et al., 2010]. Because densities and likelihoods

are often square-integrable, accurate estimations can be achieved. Finally, since

we use kernel herding to super-sample the KMPE, the KMPE is not required to

be positive to begin with.
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Figure 4.1: (Left) Comparison of approximate posteriors obtained from sur-
rogate methods on the toy exponential-gamma problem. (Right) The corre-

sponding MKML surface q(y) as a function of (ε, β) with λ = 10−3β.

4.9.1 Toy Problem: Exponential-Gamma

The toy exponential-gamma problem is a standard benchmark for likelihood-free

inference, since the true posterior pε(θ|y) is known and tractable even for ε = 0.

To stress-test each method, we compare inference accuracy under very limited

simulations of m = 100. We focus on comparing surrogate approaches, since

other methods such as REJ-ABC, MCMC-ABC, SL-ABC, and ASL-ABC have re-

ported simulation requirements several orders higher thanm = 100 on this problem

[Meeds and Welling, 2014]. We use datasets of n = 15 for both observations and

simulations, with their sample means as the summary statistic.

For GPS-ABC only we set a simulation budget of m ≤ 200 and run it until 10000

posterior samples are generated. The hyperparameters of the GP surrogate itself

are learned by maximizing the marginal likelihood of the GPR [Rasmussen and

Williams, 2006]. For the remaining hyperparameters that are not part of the

surrogate, several configurations are compared and the results of the best two are

shown, which used m = 130 and m = 197 simulations. For K-ABC, K2-ABC,

and KBR, we use the median heuristic to set their length scale hyperparameters

and manually search for the most appropriate regularization hyperparameters. We

use kernel density estimation (KDE) to visualize the posterior density from the

unweighted samples of GPS-ABC and normalized weighted samples of K-ABC,

K2-ABC, and KBR in figure 4.1 (left).

For KELFI, we show the KMPs directly in figure 4.1 (left). We first demonstrate

the case when all hyperparameters (ε, β, λ) are learned (All-Opt). To enable visu-

alization in 2D, we also present the case when the regularization hyperparameter

λ is set to 10−3β and only length scale hyperparameters (ε, β) are learned. In

this case, we show KMPs under globally optimal (Scale-Global-Opt), locally op-

timal (Scale-Local-Opt), and arbitrarily chosen hyperparameters (Non-Opt). The

corresponding MKML surface is shown in figure 4.1 (right).
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Figure 4.2: (Left) Blowfly: ARD on ε for 10 summary statistics. (Mid. &
Right) The MKML surface (×105) as a function of (ε, β0) for fixed λ = 10−3β0

where β = β0σ. White intersection indicate optimum. For Blowfly, the NMSE
(in %) for the indicated hyperparameter choices are: (1)0.72 ± 0.02, (2)1.10 ±
0.01, (3)2.07 ± 0.01, (4)2.15 ± 0.02, (5)1.11 ± 0.02, (6)1.11 ± 0.03. At (ε, β0) =

(10, 10) (outside the plot) the NMSE (in %) is 6.28± 0.03.

In figure 4.1 we compare approximate posteriors from each algorithm against the

true posterior pε=0(θ|y). While ε = 0 for pε=0(θ|y), with only 100 simulations ε > 0

is required for most LFI methods. Furthermore, except for K2-ABC, they only

make use of summary statistics without further knowledge of the dataset size n.

Consequently, most LFI methods produce approximations wider than pε=0(θ|y).

Intuitively, there is not enough simulations and thus information to justify a more

confident and peaked posterior. Nevertheless, by learning hyperparameters under

the MKML, KELFI determines an appropriate scale ε for 100 simulations. As a

result, KMPs are the closest to the true posterior pε=0(θ|y), with higher MKML

q(y) leading to more accurate KMPs q(θ|y). This demonstrates the effectiveness of

MKML as a hyperparameter learning objective for improving inference accuracy.

In contrast, the two instances of GPS-ABC reveals that varying hyperparameters

lead to significant changes in the resulting approximate posterior, yet without a

similar objective like MKML it is unclear which one to use without ground truth.

This is further emphasized by the wider posterior approximations obtained from K-

ABC, K2-ABC, and KBR, which use the median heuristic to set hyperparameters.

This is often sub-optimal as it makes no reference to the inference problem.

4.9.2 Chaotic Ecological Systems: Blowfly

The Blowfly simulator describes the complex population dynamics and evolution of

adult blowflies. Across a range of parameters it exhibits chaotic behavior that have

distinct discrepancies from real observations, resulting in a challenging inference

problem. Our experimental setup follows that of Wood [2010]. There are 6 model

parameters from which the simulator generates a time series of 180 data points that

is then summarized into 10 statistics as described in Meeds and Welling [2014],

Moreno et al. [2016], and Park et al. [2016]. The 10 summary statistics are the

log of the mean of each quartile of {Nt/1000}Tt=1 (4 statistics), the mean of each

quartile of first-order differences of {Nt/1000}Tt=1 (4 statistics), and the maximal

peaks of smoothed {Nt}Tt=1 with two different thresholds (2 statistics). We also
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use a diagonal Gaussian prior on log θ with means [2,−1.5, 6,−1,−1, log (15)] and

standard deviations [2, 0.5, 0.5, 1, 1, log(5)]. Notice that we have slightly modified

the standard deviation to be broader to make the problem more challenging.

The standard Blowfly problem has no ground truth parameters, only a set of obser-

vations. We therefore measure inference accuracy by considering the normalized

mean squared error (NMSE), which is computed in the following manner.

Firstly, before the experiments, we sample 10000 parameters from the prior and

simulate a set of summary statistic from each of them. We then compute mean

squared errors (MSEs) of each simulated summary statistic against the observed

summary statistic, and average them cross the 10000 MSEs. This leaves a vector of

10 numbers, consisting of average MSEs under the prior for each summary statistic.

We use 10000 samples as MSE estimates has stabilized with little variance.

Secondly, during each experiment, we run 1000 simulations under the posterior

mean or mode obtained from the algorithm, and compute MSEs of each simulated

summary statistic against the observed summary statistic, and average them across

the 1000 MSEs. This also produces a vector of 10 numbers, consisting of average

MSEs under the posterior mean or mode for each summary statistic. We then

divide the MSEs under the posterior mean or mode by the MSEs under the prior

computed earlier. This results in a vector of 10 numbers which is now the NMSE

for the 10 summary statistics. Since now all 10 error measures are normalized

with respect to the prior, we average them for a final single NMSE score.

In this way, each statistic is normalized in the final average and a NMSE of 100%

correspond to the performance of the prior. Hence, the NMSE measures the error

as a percentage of the error achieved by the prior.

Finally, note that this is the NMSE score for a particular experiment. For each

algorithm, we further repeat the experiment and thus this calculation process 10

times and show the average and the deviations in figure 4.3.

As simulations are expensive, in figure 4.3 (left) we record average NMSE against

the number of simulations used to understand inference efficiency.

As new simulations become available, we relearn and update the hyperparameters

for KELFI by maximizing the MKML. Figure 4.2 (center) shows an instance of the

MKML surface used to learn the hyperparameters for KELFI when using m = 280

simulations. For KBR and K-ABC we update hyperparameters by the median

length heuristic. For K-ABC we also report the case where the heurstic is scaled

by an arbitrarily chosen constant denoted with (S), which achieved significantly

better accuracy and confirms that the heuristic is often sub-optimal.

For all algorithms except KBR, we evaluate their performance by simulating from

their posterior mean. For KBR only, we simulate from its posterior mode. This is
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because KBR posterior mode consistently outperformed KBR posterior mean for

the Blowfly problem. Using the posterior mode will present KBR in its best light.

We now detail the hyperparameter choices for each algorithm other than KELFI,

since most algorithms do not have a hyperparameter learning algorithm for the

inference problem. Refer to their respective papers for a description of the meaning

of each hyperparameter. For algorithms that use a MCMC proposal distribution,

we choose a Gaussian proposal distribution with a proposal standard deviations

that are 10% of the prior standard deviations. For MCMC-ABC, we used ε = 5.

For SL-ABC, we used ε = 0.5 and S = 10. For ASL-ABC, we used S0 = 10,

ε = 0.5, ξ = 0.3, m = 10, and ∆S = 10. For GPS-ABC, we used S0 = 20 samples

from ASL-ABC to initialize the GP surrogate, and choose ε = 2, ξ = 0.05, m = 10,

and ∆S = 5. For K-ABC and KBR, we used median length heuristic to set length

scale hyperparameters, and choose λ = 10−4. Note that KBR uses two kernels

on both the parameter and the summary statistics and have two regularization

hyperparameters.

Overall, the top three performers are KELFI, KBR, and GPS-ABC. Across a range

of simulation calls, KELFI achieves the lowest error. It is also the only method

that achieved less than 1% average NMSE within 1000 simulations and achieves

this as early as 300 simulations. The most competitive methods to KELFI are

KBR and GPS-ABC. For these three methods, we also show their variability from

best to worst case NMSEs out of the 10 repeats to visualize their sensitivity to

the stochasticity in randomized simulations. This reveals that KELFI is a stable

outperformer with comparatively less variability across randomized runs.

We proceed to demonstrate and emphasize the effectiveness and suitability of

MKML as a hyperparameter learning objective, using the case with 280 simula-

tions as an example. Figure 4.2 (center) illustrates that hyperparameters with a

higher MKML (4.5) result in lower NMSE consistently. Notably, even with sub-

optimal hyperparameter choices, KELFI still achieves competitive average NMSE

scores of less than 2.2%. At 280 simulations, the next best average NMSE score

is almost 3% by MCMC-ABC as shown in figure 4.3 (left).

Figure 4.3 (center) suggests that learning the scale ε under MKML reveals an

automatic decay schedule which does not have to be set a-priori. As ε controls

the scale within which discrepancies between simulations and observations are

measured, it is expected that this scale decays as more simulation data is available.

Without the MKML, both the initialization of ε and its decay schedule are not

straight forward to determine.

In figure 4.2 (left), we show that we can perform ARD on the ABC ε-kernel κε, and

hence the kernel kε, by using a different εi for each of the 10 statistics. We do this

by initializing each εi to the isotropic solution in figure 4.2 (center) and further

optimize the MKML to learn all εi jointly. In particular, the first summary statistic
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simulation calls. Shaded regions show NMSE variability for KELFI, KBR, and
GPS-ABC. (Mid.) Blowfly: Learned ε value under maximum MKML. (Right)
Lotka-Volterra: The middle 95% credible interval of the marginal posterior

distribution of log θ1.

describes the average log population numbers nears its troughs (first quartile), and

is determined to be comparatively irrelevant (high εi). Meanwhile, the last two

statistics describe the number of peaks at two thresholds, and are determined to

be comparatively relevant (low εi). This agrees with the intuition that Blowfly

population dynamics are highly characterized by its peaks, instead of i its troughs

[Wood, 2010].

4.9.3 Predator-Prey Dynamics: Lotka-Volterra

The Lotka-Volterra simulator describes the time evolution of the populations

within a predator-prey system. Only for a small set of parameters does the model

simulate a realistic scenario with oscillatory behavior, making the inference task

formidably challenging.

We reproduce the setup as described in Papamakarios and Murray [2016]. There

are 4 parameters and 9 normalized summary statistics. We simulate data and

hence summary statistics using the ground truth parameters and treat this as the

observational data, and use it across all experiments and algorithms.

We place the same uniform prior on the log parameters. In particular, the prob-

lem places a uniform prior over log θ. Since the parameters are independent from

each other in the prior, transforming the LFI task into one with a Gaussian prior

is straight forward by doing it separately for each parameter as described in sec-

tion 4.7. To convert from log θ to z, denoting a realization of a Gaussian random

variable, we first offset and scale it to a uniform in [0, 1] then apply the standard

normal quantile function. To convert it back, which is required before we pass our

parameter query to the simulator or to present our results, we apply the standard

normal cumulative distribution function and scale and offset the uniform back to

its original ranges. Similar to the other experiments, we do not learn the prior hy-

perparameters in this paper to enable benchmarking against other methods with

the same prior, so the transformed prior stay as a standard normal.



Bayesian Conditional Kernel Mean Embeddings for Likelihood-Free Inference 118

To apply the closed-form solutions for KELFI, we transform the prior samples

into a standard Gaussian distributed samples, apply KELFI, and transform the

posterior samples back to the original space for log θ.

After performing inference on all four parameters, we show in figure 4.3 (right)

the marginal posterior distribution for log θ1. With a uniform prior and a complex

intractable likelihood, the posterior is unlikely to be a Gaussian. KELFI does

not assume that the posterior is a Gaussian and thus can provide more flexible

and accurate posteriors. After learning appropriate hyperparameters for KELFI

under MKML, we draw 10000 super-samples from the KMPE to compute the

posterior mean, and maximize the KMP to compute the posterior mode. Finally,

to compute the 95% credible interval as shown in figure 4.3 (right), we compute

the empirical 2.5% and 97.5% quantile using the 10000 super-samples.

KELFI achieves competitive performance using only 2500 simulations, with both

posterior mean and mode close to the true value. The MKML for hyperparameter

learning is shown in figure 4.2 (right). Posterior mode is obtained by maximizing

the KMP. Meanwhile, the three ABC methods used up to 100000 simulations.

While confident, LFVI [Tran et al., 2017a] tends to have a biased posterior mean.

For direct comparison, both KELFI and mixture density network (MDN) [Papa-

makarios and Murray, 2016] use the original prior as the proposal prior. KELFI

achieves slightly higher accuracy than MDN which used 10000 simulations, 4 times

that used for KELFI. Finally, we also similarly use 2500 simulations for KBR. With

the same number of simulations, KELFI achieves higher accuracy in both mean

and mode with higher confidence.

4.10 Summary and Future Work

KELFI provides a holistic framework for automatic likelihood-free inference. It is a

stable outperformer compared to state-of-the-art methods, while producing inter-

pretable automatic relevance determination of summary statistics and automatic

decay schedules for ε. By optimizing an approximate Bayesian marginal likeli-

hood, it automatically learns and adapts hyperparameters including the ε-kernel

to improve inference accuracy when limited simulations are available.

The framework is general and flexible, and can be extended in multiple directions.

Since the samples θj ∼ π(θ) do not have to be from the prior p(θ), to further

reduce simulation requirements it is possible to choose or adapt π during the

simulation process in a way that focuses on high likelihood regions.

The KML enables approximate likelihood queries at any θ ∈ ϑ, even if simulation

data is not available at the corresponding θ. By using the KML as a surro-

gate model for the true likelihood and accepting some modeling bias, we avoid
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requiring multiple expensive simulations at each query θ that is used by many

MCMC-based ABC approaches. In fact, as a function of θ the KML q(y|·) is the

predictive mean of a GPR [Rasmussen and Williams, 2006] trained on observations

{θj, κε(y,xj)}mj=1 with a GP prior GP(0, `) and Gaussian likelihood N (0,mλI),

since they admit the same resulting form. This connection could provide uncer-

tainty estimates in the KML approximation of the likelihood via the GP predictive

variance. It is possible to then use Bayesian optimization (BO) [Snoek et al., 2012]

or active learning methods to guide the proposal prior π in a sequential learning

fashion that will result in the more accurate KML approximations for a fixed

number m of simulations.

While our posterior mean embedding (4.9) is closed-form and thus exact for

the surrogate density q(θ|y), it is an approximation to the mean embedding

µΘ|Y=y :=
∫
ϑ
`(θ, ·)pε(θ|y)dθ of the true soft posterior pε(θ|y) ≡ p

(ε)
Θ|Y(θ|y), and

converges in RKHS norm at the same rate as the KML. This is different in a

subtle way to the CME of the posterior used by K-ABC, KR-ABC, and KBR,

which in fact is an approximation to µΘ|X=y :=
∫
ϑ
`(θ, ·)pΘ|X(θ|y)dθ, the mean

embedding of pΘ|X(θ|y), which avoids using the ε-kernel. A key difference is that

there is no known associated marginal likelihood or approximations thereof for the

direct posterior mean embedding, so cross validation is required for selecting the

remaining kernel hyperparameters in K-ABC, KR-ABC, and KBR. K-ABC also

do not address sampling, although kernel herding can be readily applied in the

same way. Kernel herding is applied to KBR in KMCF [Kanagawa et al., 2016]

for resampling distributions represented as a CME. We believe it would be an in-

teresting direction to investigate the relationships between the original empirical

posterior mean embedding and the surrogate posterior mean embedding.

With regards to hyperparameter learning, in the KME literature, Bayesian learn-

ing of hyperparameters in marginal mean embeddings have been addressed through

a different marginal likelihood approach by placing a GP prior on the embedding

[Flaxman et al., 2016]. However, a general approach for learning CME hyperpa-

rameters in a Bayesian framework remains an open question. Our simple surrogate

density approach can be an alternative solution to the CME Bayesian hyperpa-

rameter learning problem, and may lead to interesting connections.

With regards to sampling, by super-sampling the surrogate posterior mean em-

bedding, the number of posterior samples is decoupled from the number of sim-

ulations. This is unlike likelihood-free MCMC methods for which the algorithm

guides the simulator queries at parameter values that is not necessarily drawn from

the prior, but rather from proposals of a Markov chain. This avoids the problem of

slow mixing that is inherent in MCMC methods, and make KELFI more suitable

for multi-modal posteriors, which remains to be experimented upon.



Chapter 5

Bayesian Deconditional

Kernel Mean Embeddings

Conditional kernel mean embeddings form an attractive nonparametric framework

for representing conditional means of functions, describing the observation pro-

cesses for many complex models. However, the recovery of the original underlying

function of interest whose conditional mean was observed is a challenging infer-

ence task. We formalize deconditional kernel mean embeddings as a solution to

this inverse problem, and show that it can be naturally viewed as a nonparametric

Bayes’ rule. Critically, we introduce the notion of task transformed Gaussian pro-

cesses and establish deconditional kernel means as their posterior predictive mean.

This connection provides Bayesian interpretations and uncertainty estimates for

deconditional kernel mean embeddings, explains their regularization hyperparam-

eters, and reveals a marginal likelihood for kernel hyperparameter learning. These

revelations further enable practical applications such as likelihood-free inference

and learning sparse representations for big data.

5.1 Introduction

Observations of complex phenomena often lead to likelihoods that are described

by a conditional mean. A widely applicable setting where this occurs is collecting

observations under uncertain inputs, where the task is to learn a function f : X →
R to model a real-valued response z as a function of inputs x ∈ X without being

able to query or measure x directly to observe this phenomenon. Instead, another

measured input y ∈ Y relates to x through p(x|y). Consequently, given y, the

response Z has mean g(y) := E[f(X)|Y = y], where g is called the conditional

mean of f . Furthermore, p(x|y) is often only available as sample pairs {xi, yi}ni=1,

from simulations, algorithms, or separate experiments, making recovery of latent

functions f from conditional means g a challenging inference task.

120
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Our first contribution begins with formulating deconditional mean embeddings

(DMEs) as solutions to this inference problem by building upon the framework

of conditional mean embeddings (CMEs) [Song et al., 2013]. We show that the

DME can be established as a nonparametric Bayes’ rule in the RKHS and used

for likelihood-free Bayesian inference. In contrast to kernel Bayes’ rules (KBRs)

[Fukumizu et al., 2013] which uses third order tensors that can result in vanishing

priors, DMEs use second order tensors and avoids this problem.

Together with CMEs and KBR, DMEs form a critical part of the KME [Muandet

et al., 2017] framework, where probabilistic rules can be represented nonparametri-

cally as operators that are linear in the RKHS. This greatly simplifies probabilistic

inference without requiring parametrized distributions and compromising flexibil-

ity.

Despite this connection, there are elements unique to the KME framework that

cannot be interpreted or solved via the parallel between probability rules and

RKHS mean operations. Similar to empirical forms for KBR and CMEs, empirical

DMEs are obtained by replacing expectations in its constituent operators with

their empirical means, and introduce regularization for operator inverses to relax

RKHS assumptions, instead of as the optimal solution to a particular loss. Setting

regularization hyperparameters is difficult in practice without an appropriate loss

for the inference task. Furthermore, similar to KBR, the nonparametric Bayes’

rule provided by DMEs is a statement between observed (or simulated) variables

and not on latent functions or quantities. Consequently, uncertainty estimation in

inference of latent functions f still require a separate Bayesian formulation.

Our second contribution establishes a Bayesian regression view of DMEs as poste-

rior predictive means of the task transformed Gaussian process (TTGP), a novel

nonparametric Bayesian model that recover latent relationships between variables

without observing them jointly. TTGPs are so named because we show that

they are a type of transformed Gaussian process [Murray-Smith and Pearlmutter,

2005] where the transformations and noise covariances are learned, by transform-

ing one Gaussian process (GP) task to another, rather than designed from expert

knowledge. We use this connection to derive posterior and predictive uncertainty

estimates for DMEs and explain their regularization hyperparameters as a func-

tion of noise variance. Finally, we derive marginal likelihoods and their scalable

computational forms to learn DME hyperparameters, which can also be applied

to learn inducing points for sparse representations as a special case.
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5.2 Kernel Mean Embeddings

We begin with an overview of the KME framework from which DMEs are built

upon. KMEs are an arsenal of techniques concerned with representations and

transformations of function expectations under highly flexible distributions. They

consider functions that lie within RKHSs Hk and H`, formed by positive definite

kernels k : X ×X → R and ` : Y×Y → R. The RKHSs Hk and H` are the closure

span of the features φ(x) = k(x, ·) and ψ(y) = `(y, ·) across x ∈ X and y ∈ Y
respectively, endowed with the inner products 〈·, ·〉k ≡ 〈·, ·〉Hk and 〈·, ·〉` ≡ 〈·, ·〉H` .

The key object is the mean embedding of a distribution µX := E[k(X, ·)] ∈ Hk.

They encode function expectations in the sense that E[f(X)] = 〈µX , f〉k, due to

the reproducing property that 〈k(x, ·), f〉k = f(x) for all f ∈ Hk.

Higher ordered mean embeddings are vital components of the framework. Specifi-

cally, second order mean embeddings such as CY Y := E[`(Y, ·)⊗ `(Y, ·)] ∈ H`⊗H`

and CXY := E[k(X, ·) ⊗ `(Y, ·)] ∈ Hk ⊗ H` can be identified as cross-covariance

operators CY Y : H` → H` and CXY : H` → Hk that serve as building blocks of

CMEs and DMEs.

In practical scenarios where only iid samples {xi, yi}ni=1 that are realizations of

(Xi, Yi) ∼ PXY for i ∈ {1, . . . , n} are available, the KME framework becomes

attractive for nonparametric inference because core objects only require expec-

tations under distributions. Consequently, they can be estimated via empirical

means as µ̂X := 1
n

∑n
i=1 k(xi, ·), ĈY Y := 1

n

∑n
i=1 `(yi, ·) ⊗ `(yi, ·), and ĈXY :=

1
n

∑n
i=1 k(xi, ·)⊗ `(yi, ·) [Muandet et al., 2017].

For feature matrices, we stack features by columns Φ :=
[
φ(x1) · · · φ(xn)

]
and

Ψ :=
[
ψ(y1) · · · ψ(yn)

]
. We write gram matrices as K := ΦTΦ and L := ΨTΨ,

where the (i, j)-th element of ATB is the inner product of the i-th column of A

with the j-th column of B. That is, Kij = φ(xi)
Tφ(xj) and Lij = ψ(yi)

Tψ(yj).

When columns are elements of RKHSs such as when φ(x) = k(x, ·) in Φ and

ψ(y) = `(y, ·) in Ψ, the notation (·)T (·) is a shorthand for the corresponding

RKHS inner product 〈·, ·〉H when it is clear from context what H is. For ex-

ample, fTh is shorthand for 〈f, h〉k if f, h ∈ Hk. Another common usage is

ΦTf = {φ(xi)
Tf}ni=1 = {k(xi, ·)Tf}ni=1 = {〈k(xi, ·), f〉k}ni=1 = {f(xi)}ni=1 =: f .

For summing outer products, we write ĈY Y = 1
n
ΨΨT and ĈXY = 1

n
ΦΨT . Note

that we use non-bold letters for single points x and y, even though they are often

multivariate in practice.
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5.3 Conditional Kernel Mean Embeddings

We now present CMEs in a fashion that focuses on their operator properties. By

reviewing CMEs this way, parallels and contrast with DMEs in the subsequent

section 5.4 become more apparent. Importantly, instead of defining CMEs via an

explicit form, we begin by forming problem statements.

Definition 5.1 (Conditional Mean Problem Statement). Given a function f :

X → R, infer the function g : Y → R such that g(y) = E[f(X)|Y = y] ≡
EX|Y [f ](y). We call g the conditional mean of f with respect to PX|Y and write

the shorthand g = EX|Y [f ] = E[f(X)|Y = ·].

This naturally leads to the notion of operators that map functions f to their

conditional means g = E[f(X)|Y = ·].

Definition 5.2 (Conditional Mean Operators). The CMO CX|Y : H` → Hk cor-

responding to PX|Y is the operator that satisfies

(CX|Y )Tf = E[f(X)|Y = ·], ∀f ∈ Hk, (5.1)

where (CX|Y )T : Hk → H` denotes the adjoint of CX|Y .

Depending on the nature of `, unique solutions exist.

Theorem 5.1 (Fukumizu et al. [2004]). Assume that `(y, ·) ∈ image(CY Y ) for all

y ∈ Y. The conditional mean operator (CMO) CX|Y is unique and given by

CX|Y = CXYC
−1
Y Y . (5.2)

The assumption that `(y, ·) ∈ image(CY Y ) for all y ∈ Y is commonly relaxed by

introducing a regularization hyperparameter λ > 0 to the inverse, so that the

CMO is replaced with CXY (CY Y + λI)−1 [Song et al., 2013].

Contrary to definition 5.2, it is more common in the literature to define the CMO

as the operator CX|Y that satisfies

CX|Y `(y, ·) = E[k(X, ·)|Y = y], ∀y ∈ Y , (5.3)

while (5.1) is taken as an immediate property of CMOs [Fukumizu et al., 2004].

However, due to lemma 5.1, we instead take definition 5.2 as the definition of

CMOs, emphasizing CMOs as solutions to the conditional mean problem, and

treat (5.3) as an immediate property.

Lemma 5.1. Statements (5.1) and (5.3) are equivalent.
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The CME of PX|Y=y is µX|Y=y := CX|Y `(y, ·) ∈ Hk, equivalent to querying the

CMO at a particular input y. Consequently,

〈µX|Y=y, f〉k = 〈CX|Y `(y, ·), f〉k
= 〈`(y, ·), (CX|Y )Tf〉`
= 〈`(y, ·), g〉`
= g(y).

(5.4)

Motivated by theorem 5.1, empirical CMOs and CMEs are defined by estimating

their constituents by empirical means.

Definition 5.3 (Empirical Conditional Mean Operator). The empirical CMO is

ĈX|Y := ĈXY (ĈY Y + λI)−1, λ > 0.

Theorem 5.2 (Song et al. [2009]). The nonparametric form for ĈX|Y is

ĈX|Y = Φ(L+ nλI)−1ΨT . (5.5)

The empirical CME is then µ̂X|Y=y := ĈX|Y `(y, ·).

Consequently, with `(y) := {`(yi, y)}ni=1, an estimate for EX|Y [f ](y) is 〈f, µ̂X|Y=y〉k =

〈f, ĈX|Y `(y, ·)〉k = fTΦ(L+ nλI)−1ΨT `(y, ·) = fT (L+ nλI)−1`(y).

Critically, while empirical CMOs (5.5) are estimated from joint samples from the

joint distribution PXY , they only encode the conditional distribution PX|Y . This

means that the empirical CMOs will encode the same conditional distribution

even if the joint distribution PXY changes but the conditional distribution PX|Y
stays the same. That is, the empirical CMO built from joint samples of p(x, y) =

p(x|y)p(y) and the empirical CMO built from joint samples of q(x, y) := p(x|y)q(y)

will encode the same conditional distribution p(x|y) and converge to the same

CMO.

5.4 Deconditional Kernel Mean Embeddings

We now present a novel class of KMEs referred to as deconditional mean em-

beddings (DMEs). They are natural counterparts to CMEs. The presentation

of definitions and theorems in this section is mainly parallel to section 5.3. We

define the deconditional mean problem as the task of recovering latent functions

from their conditional means.

Definition 5.4 (Deconditional Mean Problem Statement). Given a function g :

Y → R, infer a function f : X → R such that g(y) = E[f(X)|Y = y]. We call f a

deconditional mean of g with respect to PX|Y and write the shorthand f = E†X|Y [g].
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The deconditional mean of a function g infers the function f whose conditional

mean would be g with respect to PX|Y . The corresponding operator that encodes

this transformation is the DMO.

Definition 5.5 (Deconditional Mean Operators). The deconditional mean oper-

ator (DMO) C ′X|Y : Hk → H` corresponding to PX|Y is the operator that satisfies

(C ′X|Y )TE[f(X)|Y = ·] = f, ∀f ∈ Hk. (5.6)

Depending on the nature of ` and k, unique solutions exist.

Theorem 5.3. Assume that `(y, ·) ∈ image(CY Y ) for all y ∈ Y and k(x, ·) ∈
image(CX|YCY Y (CX|Y )T ) for all x ∈ X . The deconditional mean operator (DMO)

C ′X|Y is unique and given by

C ′X|Y = (CX|YCY Y )T (CX|YCY Y (CX|Y )T )−1. (5.7)

Similar to the case with CMOs [Song et al., 2013], the assumption that k(x, ·) ∈
image(CX|YCY Y (CX|Y )T ) for all x ∈ X can be relaxed by introducing a regular-

ization hyperparameter ε > 0 to the inverse, so that the DMO is replaced with

(CX|YCY Y )T (CX|YCY Y (CX|Y )T + εI)−1.

Since DMOs invert the results of CMOs, they can also be understood as pseudo-

inverses of CMOs.

Theorem 5.4. If the symmetric inverse ((CX|Y )TCX|Y )−1 exists such that the

pseudo-inverse C†X|Y := ((CX|Y )TCX|Y )−1(CX|Y )T of the CMO is well defined, and

further the assumptions in theorem 5.3 hold, then DMOs are pseudo-inverses of

CMOs C ′X|Y = C†X|Y .

The DME of PX=x|Y is µ′X=x|Y := C ′X|Y k(x, ·) ∈ H`, equivalent to querying the

DMO at a particular input x. Consequently,

〈µ′X=x|Y , g〉` = 〈C ′X|Y k(x, ·), g〉`
= 〈k(x, ·), (C ′X|Y )Tg〉k
= 〈k(x, ·), f〉k
= f(x).

(5.8)

The form in (5.7) makes it evident that a DMO can be fully specified once CX|Y
and CY Y , encoding the measures PX|Y and PY respectively, are known. If densities

exist, we write them as pX|Y ≡ pX|Y (·|·) and pY ≡ pY (·), and drop the subscripts

in density evaluations as p(x|y) and p(y) whenever the context is clear. Note that

PX=x|Y corresponds to pX|Y (x|·) which is evaluated at x and now a function of y.
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This is in contrast with PX|Y=y corresponding to pX|Y (·|y) evaluated at y and now

a function of x.

Consider the case where X and Y play the roles of observed and unobserved

(latent) variables respectively. The DMO considers the conditional pX|Y and the

marginal pY encoded as CX|Y and CY Y (theorem 5.3), and inverts the CMO CX|Y
(theorem 5.4) with the help of the encoded marginal CY Y . This is analogous to

the Bayes’ rule, where the posterior pY |X(·|x) =
pX|Y (x|·)pY (·)∫

Y pX|Y (x|y)pY (y)dy
is fully specified

by the likelihood pX|Y and prior pY . We can then interpret DMEs as querying

the rule at the observed quantity x while leaving the rule as a function of y for

inference. Consequently, we also refer to CX|Y and CY Y as the likelihood operator

and the prior operator respectively.

The difference between the DMO (5.7) and CMO (5.2) equations is akin to writing

pY |X(·|x) using Bayes’ rule against using the conditional density rule. Compare

the DMO decomposition (5.7) with the CMO decomposition CY |X = CY XC
−1
XX =

(CXY )TC−1
XX in the other direction by reversing the roles of X and Y in (5.2),

which would correspond to the posterior PY |X . The CMO is composed of a joint

operator CXY and an evidence operator CXX corresponding to the joint PXY and

evidence PX distributions. Similarly, the DMO is also composed of a joint operator

CXY = CX|YCY Y : H` → Hk and an evidence operator C ′XX := CX|YCY Y (CX|Y )T :

Hk → Hk, but both specified from the likelihood and prior operators.

Motivated by this, we propose to estimate the likelihood and prior operators us-

ing separate and independently drawn samples. The likelihood operator CX|Y is

estimated as ĈX|Y (definition 5.3) using iid samples {xi, yi}ni=1, also denoted as

x := {xi}ni=1 and y := {yi}ni=1. Note that as the likelihood operator is a CMO,

these joint samples can be from any joint distribution QXY 6= PXY as long as

its conditional distribution is also PX|Y . The prior operator CY Y is estimated as

C̃Y Y := 1
m

∑m
j=1 `(ỹj, ·)⊗`(ỹj, ·) using another set of iid samples ỹ := {ỹj}mj=1 from

PY .

Definition 5.6 (Empirical Deconditional Mean Operator). Let ε > 0 be a reg-

ularization hyperparameter and define ĈX|Y and C̃Y Y as above. The empirical

DMO is

C̄ ′X|Y := (ĈX|Y C̃Y Y )T (ĈX|Y C̃Y Y (ĈX|Y )T + εI)−1. (5.9)

The accents notate the set of samples used for estimation. When both sets are

used such as in the estimation of the DMO C ′X|Y , we denote it with a bar such as

C̄ ′X|Y .

Theorem 5.5. The nonparametric form for C̄ ′X|Y is

C̄ ′X|Y = Ψ̃
[
ATKA+mεI

]−1
ATΦT , (5.10)



Bayesian Deconditional Kernel Mean Embeddings 127

where A := (L+ nλI)−1L̃, L̃ := ΨT Ψ̃, and Ψ̃ :=
[
ψ(ỹ1) · · · ψ(ỹm)

]
.

The empirical DME is then µ̄′X=x|Y := C̄ ′X|Y k(x, ·).

Consequently, with k(x) := {k(xi, x)}ni=1 and g̃ := {g(ỹj)}mj=1, an estimate for

E†X|Y [g](x) is 〈g, µ̄′X=x|Y 〉` = g̃T
[
ATKA + mεI

]−1
ATk(x). This motivates the fol-

lowing definitions, where the notation g̃ is replaced with z̃, to be interpreted as

target observations of g at ỹ.

Definition 5.7 (Nonparametric DME Estimator). The nonparametric DME es-

timator, also called the kernel DME estimator or the DME estimator in function

space view, is f̄(x) = ᾱTk(x) =
∑n

i=1 ᾱik(xi, x), where ᾱ := A
[
ATKA+mεI

]−1
z̃

and A := (L + nλI)−1L̃. Equivalently, f̄(x) = z̃T
[
ATKA + mεI

]−1
ATk(x). An

alternative form is f̄(x) = z̃TAT
[
KAAT +mεI

]−1
k(x).

When features φ(x) ∈ Rp and ψ(y) ∈ Rq are finite dimensional, we define the para-

metric DME estimator as follows by rewriting definition 5.7 using the Woodbury

identity

Definition 5.8 (Parametric DME Estimator). The parametric DME estimator,

also called the feature DME estimator or the DME estimator in weight space

view, is f̄(x) = w̄Tφ(x), where w̄ = [ΦAATΦT +mεI]−1ΦAz̃ and A := ΨT (ΨΨT +

nλI)−1Ψ̃. Equivalently, f̄(x) = z̃TATΦT [ΦAATΦT +mεI]−1φ(x).

In definition 5.7 (resp. 5.8), computational complexity is dominated by inversions

for L+ nλI and ATKA+mεI (resp. ΨΨT + nλI and ΦAATΦT +mεI) at O(n3)

and O(m3) (resp. O(q3) and O(p3)). For the alternative form in definition 5.7,

both inversions are O(n3), allowing for larger m at O(m) without compromising

tractability.

5.5 Task Transformed Gaussian Processes

DMEs are constructed as solutions to the task of inferring deconditional means,

which are often real-valued functions. Regression problems also address inference

of real-valued functions from data. This raises curiosity towards whether DMEs

can be formulated as solutions to a regression-like problem, and what insights this

connection would provide.

In this section, we formulate the task transformed regression problem to provide

regression views of DMEs. To do this, we first briefly review transformed regression

in section 5.5.1 before we present our contributions in section 5.5.2.
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→ Transform observations (outputs)

T: Transformed
B: Bayesian
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L: Linear
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Figure 5.1: Three dimensions of model extensions. Kernel extensions (blue)
specify feature spaces implicitly through a kernel. Bayesian extensions (green)
introduce notions of uncertainty on latent quantities (weights or functions).
Finally, transformed extensions (orange) capture indirect function observations.

5.5.1 Transformed Regression

Standard regression models often assume a Gaussian full data likelihood p(z|f) =

N (z; f , σ2I) with targets z := {zi}ni=1 ∈ Rn. In the generalized setting when

observations of f at x are not available but observations of linear combinations

thereof are, we can use p(z̃|f) = N (z̃;MT f ,Σ) for some transformation M ∈ Rn×m

and noise covariance Σ, where z̃ := {z̃j}mj=1 ∈ Rm are the available observations.

We refer to this setting as transformed regression. They can be seen as another

dimension of modeling with linear ridge regression (LRR) as the base model (fig-

ure 5.1). KRR is obtained from LRR via the kernel trick and Woodbury identity,

and they are MAP solutions or predictive means of GPR and Bayesian linear re-

gression (BLR) respectively [Rasmussen and Williams, 2006]. Consequently, we

also refer to GPR as Bayesian kernel regression (BKR). Analogous relationships

hold between transformed models.

5.5.2 Task Transformed Regression

We define task transformed regression (TTR) as the problem of learning to predict

a target variable Z from features X when no direct sample pairs of X and Z are

available but instead indirect samples {xi, yi}ni=1 and {ỹj, z̃j}mj=1 with a mediating

variable Y are available. The name illustrates the idea of transforming the task of

regressing Z on Y to learn g : Y → R, using the task or original dataset {ỹj, z̃j}mj=1,

to the task of regressing Z on X to learn f : X → R, by mediating the task dataset

through the transformation dataset {xi, yi}ni=1. As the mediating variable Y links

the two sets together, y and ỹ control the task transformation.
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5.5.2.1 DME as solution to chained loss

We formulate losses for TTR, and establish DMEs as solutions. We begin with

the parametric case with f(x) = wTφ(x) and g(y) = vTψ(y).

Theorem 5.6 (Task transformed linear ridge regression (TTLRR)). The weights

of the parametric DME estimator f̄(x) = w̄Tφ(x) (definition 5.8) solve chained

regularized least square losses,

v̂[w] := arg min
v∈Rq

1

n

n∑
i=1

(wTφ(xi)− vTψ(yi)))
2 + λ‖v‖2,

w̄ := arg min
w∈Rp

1

m

m∑
j=1

(z̃j − v̂[w]Tψ(ỹj))
2 + ε‖w‖2.

(5.11)

The notation v̂[w] explicitly denotes that v̂ depends on w. Conceptually, in

function space view the first optimization finds g so that f at x best matches with

g at y, leading to a solution ĝ[f ] that is dependent on f . The second finds f so

that ĝ[f ] at ỹ best matches targets z̃. Using the kernel trick k(x, x′) = φ(x)Tφ(x′),

we obtain the nonparametric case.

Lemma 5.2 (Task transformed kernel ridge regression (TTKRR)). The weights

of the nonparametric DME estimator f̄(x) = ᾱTk(x) (definition 5.7) satisfies

w̄ = Φᾱ (the kernel trick).

5.5.2.2 DME as posterior predictive mean of TTGP

We extend TTLRR and TTKRR to the Bayesian case. This connection reveals

that TTR models are transformed regression models with transformations and

noise covariances that are learned.

In the Bayesian parametric case, we have task transformed Bayesian linear regres-

sion (TTBLR). We place separate independent Gaussian priors p(v) = N (v; 0, β2I)

and p(w) = N (w; 0, γ2I) for g and f respectively. As z is not observed directly

from f but only for g, we include noise only for observing g to arrive at likelihoods

p(z|v) = N (z; vTψ(y), σ2) and p(z|w) = N (z; wTφ(x), 0) for g and f respectively.

In the Bayesian nonparametric case, we have task transformed Bayesian kernel

regression (TTBKR). We place GP priors g ∼ GP(0, `) and f ∼ GP(0, k) on the

functions directly. Consequently, TTBKR is also referred to as task transformed

Gaussian process regression (TTGPR). Similar to TTBLR, the likelihoods are

p(z|g) = N (z; g(y), σ2) and p(z|f) = N (z; f(x), 0).

The graphical model for TTGPR is shown in figure 5.2. The two GPs for g and f

are linked by constraining their targets to be the same at y and x respectively. The
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Figure 5.2: Graphical model (chain graph) for task transformed Gaussian
process regression (TTGPR). Circles are random variables. Shaded circles are
observed random variables. Undirected edges indicate the GP field, where all
the random variables on the field are fully connected to each other [Rasmussen
and Williams, 2006]. The goal is to infer f? to predict z? at x?, using only
a task or original dataset {ỹj , z̃j}mj=1 and a transformation dataset {xi, yi}ni=1.
To connect the two GPs, we posit that the unobserved targets z at x and at y
would have been the same if they were observed. Note that like regular GPs,
to TTGPs the inputs x and y are not modeled as random variables but treated

as index variables instead.

GP for g is used to infer the predictive distribution p(z̃|z), which in turn specifies

the overall likelihood p(z̃|f) used to infer f . Detailed derivations are provided in

the proof of theorem 5.7.

Theorem 5.7 (Task transformed Bayesian linear regression (TTBLR) and Task

transformed Bayesian kernel regression (TTBKR)). (1) The TTBLR is a TBLR

with M = ΨT (ΨΨT + σ2

β2 I)−1Ψ̃ and Σ = σ2Ψ̃T (ΨΨT + σ2

β2 I)−1Ψ̃ + σ2I as the

transformation and noise covariance. (2) The TTBKR is a TBKR with transfor-

mation M = (L+ σ2I)−1L̃ and noise covariance Σ = ˜̃L+ σ2I − L̃T (L+ σ2I)−1L̃.

(3) The TTBLR and TTBKR marginal likelihoods are p(z̃) = N (z̃; 0, [Σ−1 −
Σ−1ATΦTCΦAΣ−1]−1) with shorthand C = [ΦAΣ−1ATΦT + 1

γ2
I]−1 and p(z̃) =

N (z̃; 0, ATKA + Σ) respectively. (4) For both models, when the posterior for g

is approximated via MAP, the covariance becomes Σ = σ2I. In this case, the

parametric (resp. nonparametric) DME estimator (definitions 5.7 and 5.8) is

the predictive mean of a TTBLR (resp. TTBKR) with λ = σ2

nβ2 and ε = σ2

mγ2

(resp. λ = σ2

n
and ε = σ2

m
). An alternative TTBKR marginal likelihood is

p(z̃) = N (z̃; 0, σ2[I − AT (KAAT + σ2I)−1KA]−1). (5) When both posteriors for

g and f are approximated via MAP, TTBLR and TTBKR becomes TTLRR and

TTKRR respectively with λ and ε from (4).

Importantly, our end goal is to infer f . While this involves inferring g, g is not

of direct interest. A simpler alternative is to only perform Bayesian inference on

f and approximate g with its MAP solution, simplifying the noise covariance via

(4) of theorem 5.7. This establishes a Bayesian interpretation for DMEs as MAP
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estimates of TTGPs. Critically, by maximizing the TTGP marginal likelihood, we

can learn DME hyperparameters of kernels k and `, and also λ and ε. Furthermore,

the computational complexity for alternative marginal likelihood is dominated by

inversions that are O(n3) only, again allowing for larger m at O(m).

In summary, we first establish the DME as a nonparametric solution to the TTR

problem under chained regularized least squares losses that make learning f depen-

dent on learning g. While λ and ε are previously seen as numerical adjustments to

relax RKHS assumptions and stabilize matrix inversions in the KME framework,

they can now be seen as controlling the amount of function regularization under

this loss. Secondly, we present TTGPs as nonparametric Bayesian solutions to

this regression problem and show that DMEs are their posterior predictive means.

Again, inference of f is dependent on the inference of g, allowing GP uncertainties

to propagate through. This connection provides Bayesian interpretations of DMEs

and enable uncertainty estimation in inferring deconditional means. Critically, we

use this to derive marginal likelihoods for hyperparameter learning.

5.6 Nonparametric Bayes’ Rule

While DMOs were constructed as solutions to the deconditional mean problem,

they also resemble Bayes’ rule when we focus solely on considering the encoded

relationship between X and Y . This was motivated by theorem 5.3, which revealed

that the DMO can be fully specified by the CMO CX|Y and the second order mean

embedding CY Y that encoded the likelihood PY |X and prior PY respectively. To

establish this view, we investigate the conditions for which the DMO C ′X|Y coincide

with the CMO CY |X that encodes the posterior PY |X , leading to a nonparametric

Bayes’ rule.

While first class citizens of probability rules are density evaluations, first class

citizens of the KME framework are expectations. Consequently, instead of relating

density evaluations, rules under the KME framework relate mean embeddings of

distributions at various orders. Importantly, while a distribution Y ∼ PY has one

simple density evaluation pY (y), it can have different RKHS representations at

different orders such as µY and CY Y or higher.

A nonparametric Bayes’ rule is a rule which translates Bayes’ rule into the RKHS,

where distributions are represented as RKHS operators, alleviating limitations

from parametric assumptions or approximations such as Gaussian likelihoods or

posteriors. It computes a posterior operator CY |X when given only likelihood

operators (e.g. CX|Y ) and prior operators (e.g. CY Y ). The DMO is appealing as

all operators involved are of second order and the same second order likelihood

and prior operators are used for both the joint and evidence operator.
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However, because C ′XX is not necessarily the same as CXX , the DMO C ′X|Y =

(CXY )T (C ′XX)−1 is not necessarily the posterior operator CY |X = (CXY )T (CXX)−1.

Nevertheless, under certain conditions they coincide with each other.

Theorem 5.8. If CX|YCY |XCXX = CXX , then C ′XX = CXX and C ′X|Y = CY |X .

A special instance where the assumptions are met is when X = r(Y ) where r is not

necessarily invertible. Importantly, for empirical DMOs, having xi = xj for any

yi = yj suffices, which can be achieved if all yi are unique. Furthermore, empirical

DMOs C̄ ′X|Y can be seen as generalizations of empirical CMOs ĈY |X in the other

direction.

Theorem 5.9. If m = n and ỹi = yi for all i ∈ {1, . . . , n}, then the empirical

DMO corresponding to PX|Y becomes the empirical CMO corresponding to PY |X
for λ→ 0+,

lim
λ→0+

C̄ ′X|Y = Ψ
[
K + nεI

]−1
ΦT = ĈY |X . (5.12)

Intuitively, suppose {xi, yi}ni=1 are from p(x, y) := p(x|y)p(y) and {ỹj}mj=1 = {yi}ni=1

is from p(y), then the DMO of p(x|y) is equivalent to the CMO of p(y|x) =

p(x|y)p(y)/
∫
Y p(x|y)p(y)dy in the other direction, as per theorem 5.9. In general,

however, if {xi, yi}ni=1 are from q(x, y) := p(x|y)q(y) and {ỹj}mj=1 is from p(y), then

using the joint samples from q(x, y) only to build the CMO will yield the CMO

of q(y|x) = p(x|y)q(y)/
∫
Y p(x|y)q(y)dy, while using both the joint samples from

q(x, y) and marginal samples from p(y) to build the DMO will yield the CMO

corresponding to p(y|x) = p(x|y)p(y)/
∫
Y p(x|y)p(y)dy.

Both the usual and nonparametric Bayes’ rule are derived to reverse the rela-

tionship specified by the likelihood (density or operator, resp.) by matching the

joint. In both cases, the prior (density or operator, resp.) is inevitably required

to perform this computation.

Consider the derivation for Bayes’ rule. When given a forward density p(x|y)

and a marginal density on its conditioned variable p(y) which specifies a joint

p(x, y) = p(x|y)p(y), we seek a backward density q(y|x) and a marginal density

q(x) that would yield the same joint q(y|x)q(x) = p(x, y) = p(x|y)p(y). It is only

when applying
∫
Y ·dy on both sides, requiring that q(y|x) is a density, that we

have q(x) =
∫
Y p(x|y)p(y)dy and thus Bayes’ rule.

Similarly, when given a forward CMO CX|Y : H` → Hk and a symmetric oper-

ator CY Y : H` → H` on its conditioned variable which specifies a joint CXY =

CX|YCY Y , we seek a backward operator DY |X : Hk → H` and a symmetric op-

erator DXX : Hk → Hk that would yield the same joint DY |XDXX = CY X =

(CXY )T = (CX|YCY Y )T . Without further requirement we see that DY |X = C ′X|Y
(5.7) and DXX = C ′XX is one solution. It is only when applying CX|Y on both

sides, requiring the assumption of theorem 5.8, that we have DY |X = CY |X and

DXX = CXX and thus a nonparametric Bayes’ rule.



Bayesian Deconditional Kernel Mean Embeddings 133

Table 5.1: Empirical estimators for DMO and KBR. We use the shorthand
A := (L+ nλI)−1L̃ and D := diag(A1).

Method Joint Operator Evidence Operator Posterior Operator Computational Form
C̄XY C̄XX or C̄ ′XX C̄Y |X or C̄ ′X|Y C̄Y |X or C̄ ′X|Y

DMO ĈX|Y C̃Y Y ĈX|Y C̃Y Y (ĈX|Y )T (C̄XY )T (C̄ ′XX + εI)−1 Ψ̃
[
ATKA+mεI

]−1
ATΦT

DMO(W) ĈX|Y C̃Y Y ĈX|Y C̃Y Y (ĈX|Y )T (C̄XY )T (C̄ ′XX + εI)−1 Ψ̃AT
[
KAAT +mεI

]−1
ΦT

KBR(a)-I ĈX|Y C̃Y Y ĈXX|Y µ̃Y (C̄XY )T (C̄XX + εI)−1 Ψ̃AT
[
KD +mεI

]−1
ΦT

KBR(a)-II ĈX|Y C̃Y Y ĈXX|Y µ̃Y (C̄XY )T (C̄2
XX + εI)−1C̄XX Ψ̃AT

[
(KD)2 +m2εI

]−1
KDΦT

KBR(b)-I ĈXY |Y µ̃Y ĈXX|Y µ̃Y (C̄XY )T (C̄XX + εI)−1 ΨD
[
KD +mεI

]−1
ΦT

KBR(b)-II ĈXY |Y µ̃Y ĈXX|Y µ̃Y (C̄XY )T (C̄2
XX + εI)−1C̄XX ΨD

[
(KD)2 +m2εI

]−1
KDΦT

5.7 Connections to Kernel Bayes’ Rule

Bayesian inference often requires computation of the posterior PY |X when given

the likelihood PX|Y and the prior PY . When density evaluations exist, the Bayes’

rule provides their relationship as pY |X(·|x) =
pX|Y (x|·)pY (·)∫

Y pX|Y (x|y)pY (y)dy
.

Nevertheless, several levels of intractability may arise. The first is when both

likelihood and prior density evaluations are tractable but the evidence integral∫
Y pX|Y (x|y)pY (y)dy is intractable, leading to literatures such as VI [Blei et al.,

2017] and MCMC [Hastings, 1970]. The next is when only likelihood evaluations

are intractable but sampling is possible, leading literatures such as LFI and ABC

[Marin et al., 2012]. More rarely, only prior evaluations are intractable but avail-

able via sampling, leading to literatures in implicit priors. The last is when both

the likelihood and prior evaluations are intractable but available via sampling,

leading to newer literatures such as implicit generative models.

While there are many approaches that addresses posterior approximations in each

of these scenarios, the underlying limitation that is shared across all these settings

is that Bayes’ rule requires density evaluations that are difficult to approximate in

high dimensions from samples. Instead, if relationships between the posterior, like-

lihood, and prior can be captured without using density evaluations, but directly

by using samples, this issue could be more naturally sidestepped. Both DMOs

and KBR provide such a nonparametric Bayes’ rule. This is especially useful for

performing inference on implicit models such as those expressed as simulators,

since implicit distributions generate samples directly.

DMOs have strong connections to KBR. Both provide a nonparametric Bayes’ rule

under the KME framework. In contrast to DMOs where both likelihood and prior

operators are of second order, both KBR(a) and KBR(b) [Fukumizu et al., 2013,

Song et al., 2013] use a third order likelihood mean operator CXX|Y and a first

order prior mean embedding µY for the evidence mean operator CXX = CXX|Y µY .

KBR(b) further uses a different third order likelihood mean operator CXY |Y for

the joint mean operator CXY = CXY |Y µY . Consequently, KBR becomes sensitive
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Table 5.2: Degenerate case for empirical estimators when ε = 0

DMO(W) KBR(a) KBR(b)

Ψ̃AT
[
AAT

]−1
K−1ΦT Ψ̃ATD−1K−1ΦT ΨK−1ΦT

to inverse regularizations and effects of prior samples ỹ can vanish. For instance,

when ε → 0+, KBR(b) degenerate to C̄Y |X = ΨK−1ΦT , which is a CMO that no

longer depend on ỹ. Instead, DMOs degenerate to C̄ ′X|Y = Ψ̃AT
[
AAT

]−1
K−1ΦT ,

retaining their original structure.

Importantly, it is only when DMOs and KBR are viewed as a statement of the

relationship between X and Y that they are seen as nonparametric versions of

the Bayes’ rule. However, DMOs and KBR are not Bayesian models with respect

to the task of inferring deconditional mean or conditional means. This is because

both models only infer point estimates for the deconditional or conditional mean,

and no measure of uncertainty in the inferred function is provided.

Table 5.1 compares all four forms of KBR [Song et al., 2013] with DMO. This

table illustrates the different ways each method estimates the joint and evidence

operators from likelihood and prior operators, the type of regularization used for

inverting the evidence operator, and the final computational form. For KBR, (a)

and (b) differ in the joint operator, and I and II differ in the type of regularization

used for inverting the evidence operator. Via the Woodbury identity, for DMO we

also show an alternative computational form DMO(W) that better illustrate its

contrast with KBR(a)-I and KBR(b)-I. Note that unlike the four types of KBR,

DMO(W) is the same model as DMO, just with a different computational form.

In particular, the diagonal matrix D := diag(A1) arises from the use of third

order operators. This can make estimators sensitive to regularizations on inverse

operators. This is best seen in the degenerate case of ε→ 0+, shown in table 5.2,

where for KBR(b) the effect of ỹ vanishes, even though ε does not correspond to

regularizations from the prior.

Furthermore, the original computational form of DMOs involves the inverse of a

positive definite matrix. This however is not true for KBR(a) and KBR(b) since

KD is not symmetric and thus the resulting matrix to be inverted cannot be

positive definite. For KBR(b), by using D = D
1
2D

1
2 and the Woodbury iden-

tity, KBR(b)-I and KBR(b)-II can be written in forms with symmetric matrix in-

verses as C̄Y |X = ΨD
1
2

[
D

1
2KD

1
2 +mεI

]−1
D

1
2 ΦT and C̄Y |X = ΨD

1
2

[
D

1
2KDKD

1
2 +

m2εI
]−1

D
1
2KDΦT respectively. However, it is difficult to interpret this form.

Finally, similar to theorem 5.9, for the other degenerate case where m = n, ỹ = y,

and λ→ 0+, all estimators revert to a CME ĈY |X = Ψ(K + nεI)−1ΦT .
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5.8 Further Connections

Viewing KMEs as regressors provides valuable insights and interpretations to the

framework. CMOs can be established as regressors where the vector-valued tar-

gets are also kernel induced features [Grünewälder et al., 2012]. In contrast, we

establish DMOs as solutions to task transformed regressors which recover latent

functions that, together with a likelihood, governs interactions between three vari-

ables.

The TTR problem describes the setting of learning from conditional distributions

in the extreme case where only one sample of xi is available for each yi to describe

p(x|y). Dual KMEs [Dai et al., 2017] formulate this setting as a saddle point

problem, and employ stochastic approximations to efficiently optimize over the

function space. However, without connections to Bayesian models such as TTGPs

that admit a marginal likelihood, hyperparameter selection often require inefficient

grid search.

Hyperparameter learning of marginal embeddings have been investigated by plac-

ing GP priors on the embedding itself to yield a marginal likelihood objective

[Flaxman et al., 2016]. However, it is unclear how this can be extended to CMEs.

Our marginal likelihoods (theorem 5.7 and theorem 5.10) provide such objective

for DMEs and, due to theorem 5.9, it can also be applied to CMEs as a special

case.

5.9 Applications and Experiments

While DMEs are developed to complement the theoretical framework of KMEs,

in this section we describe and demonstrate some of their practical applications

with experiments.

5.9.1 Hyperparameter Learning for TTR

We first illustrate in figure 5.3 the TTR problem, the primary application of

TTGPs and DMEs. While X and Y are multivariate in general, we use 1D

examples to enable visualizations. Although this is a 1D problem, the simula-

tion process p(x|y) and observation process p(z|y) are governed by non-trivial

relationships where successful recovery of f requires dealing with difficult multi-

modalities in p(y|x). To generate the data, we choose non-trivial functions r and f

and generate Xi = r(Yi) + ηi and Z̃j = f(r(Ỹj) + η̃j) + ξ̃j, where Yi, Ỹj ∼ U(−6, 6)

and ηi, η̃j, ξ̃j ∼ N (0, 0.252) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. In this



Bayesian Deconditional Kernel Mean Embeddings 136

−8 −6 −4 −2 0 2 4 6 8
y

−6
−4
−2

0
2
4
6

x

n= 100

Simulation Process

−8 −6 −4 −2 0 2 4 6 8
y

−3
−2
−1

0
1
2
3

z

m= 150

Observation Process

−8 −6 −4 −2 0 2 4 6 8
x

−3
−2
−1

0
1
2
3

f(x
)

Latent Function

Simulated Data Observed Data True f(x) Impute Cascade DME-TTGP (Init) DME-TTGP (Learn)

Figure 5.3: Illustration of latent function recovery with a task transformed
Gaussian process (TTGP) on non-trivial simulation and observation processes
p(x|y) and p(z|y). (Left) The simulation process p(x|y). (Center) The observa-
tion process p(z|y). (Right) The true latent function f , the naive solutions using
cascaded regressors and imputed data, and the mean and uncertainty bounds of
the TTGP, also the Bayesian DME, with initial and learned hyperparameters.

All bounds are 2 standard deviations from the mean.

way, p(x|y) = N (x; r(y), 0.252), p(z|x) = N (z; f(x), 0.252), and E[Z|Y = y] =

E[f(r(y) + η̃) + ξ̃] = E[f(X)|Y = y].

By optimizing the marginal likelihood in theorem 5.7 (3), we see that the DME is

able to adapt from its initial hyperparameters to learn the latent function accu-

rately.

We compare this to two naive solutions that one may propose when faced with a

TTR problem. The cascade method trains separate regressors from X to Y , with

the transformation set, and from Y to Z, with the task set. They use the former

to predict y? from x? and the latter to predict z? from y?. The impute method

trains a regressor from Y to Z with the task set and predicts zfake at locations

y, and trains a regressor on the dataset (x, zfake) to predict z? from a new x?.

We use GPR means (KRR) for all such regressors. Both methods suffer because

uncertainty propagation is lost by training regressors separately. The cascade

method suffers further because p(y|x) is usually highly multi-modal such as in this

example, so unimodal regressors like GPR from X to Y are unsuitable. This also

highlights that while DMEs provides unimodal Gaussian uncertainty on function

evaluations and thus Z, they capture multi-modality as a nonparametric Bayes’

rule between X and Y .

5.9.2 Sparse Representation Learning with TTGP

A special case of the TTR problem is to learn sparse representations for big data

with trainable inducing points. Continuing with the notations used so far, we are

given a large original dataset (ỹ, z̃) of size m, with inputs Y and target Z. We

let the transformation dataset be a set of n inducing points x = y = u for Y

where n << m. That is, we degenerate to X = Y and X = Y . We maximize

the alternative marginal likelihood in theorem 5.7 (4) with respect to the inducing
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Figure 5.4: Sparse representation learning on a dataset of 100 points generated
by using the toy process from Rasmussen and Williams [2006] as ground truth.
(Left) The true function, represented exactly by a GP mean using 5 points. (Left
Center) DME using 5 random points. (Right Center) DME with the 5 points and
all hyperparameters learned jointly via its marginal likelihood. (Right) DME
with the 5 points learned via its marginal likelihood under true hyperparameters.

The vertical position of sparse representations has no meaning.

points and learn the TTGP hyperparameters jointly. For predictive mean we use

the alternative computational form in definition 5.7. Similar form exists for the

covariance. These alternative forms are suitable for this application because n is

small for its O(n3) inversions and dependence on m is only O(m). We illustrate

this process in figure 5.4.

5.9.3 Automatic Likelihood-Free Inference with DME

As a nonparametric Bayes’ rule, DMEs can be used for LFI [Marin et al., 2012]

where likelihood evaluations are intractable but sampling from a simulator x ∼
p(x|θ) is possible. The simulator takes parameters θ and stochastically generates

simulated data that are often summarized into statistics x. Observed data are also

summarized into statistics y, and discrepancies with x are often measured by an

ε-kernel κε(y,x) = pε(y|x) such that pε(y|θ) =
∫
pε(y|x)p(x|θ)dθ. This ε is not

to be confused with the regularization used for C ′XX , which we denote as δ for this

section only. After selecting a prior p(θ), the goal is to approximate the posterior

pε(θ|y).

Translating notations into the LFI setting, we have xi → xi, yi → θi, ỹj →
θ̃j, and x → y. We first simulate xi ∼ p(x|θi) on parameters {θi}ni=1 ∼ π(θ)

not necessarily from the prior to get {θi,xi}ni=1 for the likelihood, and sample

{θ̃j}mj=1 ∼ p(θ) for the prior. We then build the DME µ̄Θ|X=y and sample it with

kernel herding [Chen et al., 2010] for posterior super-samples. This is described

in algorithm 4.

Crucially, leveraging the insights gained from the KELFI framework, we can ap-

proximate the MKML empirically using prior samples and use it as a hyperparam-

eter learning objective for DMEs in the context of LFI. Recall that the MKML

approximates the marginal likelihood of the overall inference problem. We provide
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Algorithm 4 Deconditional mean embeddings for likelihood-free inference

1: Input: Data y, simulations {θi,xi}ni=1 ∼ p(x|θ)π(θ), prior samples {θ̃j}mj=1 ∼
p(θ), query points {θ?r}Rr=1, kernels k, κε, `, and `′, regularization λ and δ

2: L← {`(θi,θj)}n,ni,j=1, L̃← {`θi, θ̃j)}n,mi,j=1

3: A← (L+ nλI)−1L̃, L̃? ← {`(θ̃j,θ?r)}
m,R
j,r=1,

4: K ← {k(xi,xj)}n,ni,j=1, k(y)← {k(xi,y)}ni=1

5: DME: µ← (L̃?)TAT
[
KAAT +mδI

]−1
k(y) ∈ RR

6: for s ∈ {1, . . . , S} with a← 0 ∈ RR initialized do
7: θ̂s ← θ?r? where r? ← arg maxr µr − (ar/s)
8: a← a + {`′(θ?r , θ̂s)}Rr=1

9: end for
10: Output: Posterior super-samples {θ̂s}Ss=1

11: Learning: q̄ ← mean(ATκε), κε ← {κε(y,xi)}ni=1

such an approximate marginal likelihood objective q̄ to maximize for hyperparam-

eter learning of the DME in line 11.

Theorem 5.10 (Approximate Marginal Likelihood for LFI). Assume κε(y, ·) ∈
Hk and that ĈX|Θ is a bounded operator for all n. Denote κε(y) = {κε(y,xi)}ni=1

and 1m = {1}mj=1, then q̄(y) := 〈κε(y, ·), ĈX|Θµ̃Θ〉Hk = 1
m
κTε A1m is an estimator

to the marginal likelihood pε(y) and converge at Op(m
− 1

2 + (nλ)−
1
2 + λ

1
2 ).

In a similar fashion to KELFI, to satisfy κε(y, ·) ∈ Hk, we use κε(y,x) = pε(y|x) =

N (y; x, ε2I) and Gaussian kernel for k with length scale ε, so that κε is just the

normalized version of the reproducing kernel k.

Importantly, while the approximate marginal likelihood q̄(y) depends on the hy-

perparameters of the kernels k and ` and the regularization λ, it does not depend

on ε. At first, it seems that this objective cannot help us learn ε. Fortunately,

due to points (4) and (5) of theorem 5.7, we have that a good proxy for setting

ε once λ is learned is ε = n
m
λ. Nevertheless, for simplicity in our experiments we

optimize all kernel hyperparameters and keep the regularization hyperparameters

fixed, which has already achieved sufficiently accurate results.

Figure 5.5 demonstrates algorithm 4 two standard benchmarks, exponential-gamma

problem and the Lotka-Volterra problem, adding onto the experimental results of

section 4.9.

5.9.3.1 Exponential-Gamma

The toy exponential-gamma problem is a standard benchmark for likelihood-free

inference, where the true posterior pε(θ|y) is known and tractable even for ε = 0.

We follow the experimental setup described in section 4.9.1.
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Figure 5.5: Application to LFI. (Left) Approximate posteriors under kernel
based LFI methods for the toy exponential-gamma problem using 100 simu-
lations. ‘Global’ and ‘Local’ refer to the optimality of model hyperparame-
ters with respect to their respective approximate marginal likelihoods. (Right)
Approximate posteriors of the first (log) parameter. Error bars represent the

middle 95% credible interval.

For the exponential-gamma problem, we compare directly with other kernel ap-

proaches. Of the kernel based methods that we have benchmarked against, K-ABC

[Nakagome et al., 2013], K2-ABC [Park et al., 2016], KBR [Fukumizu et al., 2013],

and KELFI are also LFI methods based on the KME framework. Consequently,

they are very suitable for comparisons towards DME. For all these methods, we

apply kernel herding on their posterior embeddings to get posterior samples, and

plot the approximate posterior density in figure 5.5 (left) using KDE on the pos-

terior samples. In contrast, GPS-ABC [Meeds and Welling, 2014] has its own

adaptive MCMC based sampling algorithm. We set a simulation budget of 200

simulations and run it until either 10000 posterior samples are generated or the

simulation budget is reached.

For hyperparameters, we used standard median heuristic for K-ABC, K2-ABC,

and KBR. In contrast, DME and KELFI have their own marginal likelihoods for

hyperparameter learning. For both cases, we find global and local optimums of

the marginal likelihood for the hyperparameters and show their results, empha-

sizing that maximizing the marginal likelihood objective produces better infer-

ence results. The hyperparameters of the GP surrogate itself used in GPS-ABC

are learned by maximizing the marginal likelihood of the GPR [Rasmussen and

Williams, 2006]. However, for hyperparameters of GPS-ABC that are not part

of the surrogate, we select them based on the original paper [Meeds and Welling,

2014]. We then report its best two results.

As simulations are usually very expensive, we show the case with very limited

simulations (n = 100), leading to most methods producing posteriors wider than

the ground truth. Nevertheless, by optimizing q̄ in line 11, DMEs can adapt their

kernel length scales accordingly.
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5.9.3.2 Lotka-Volterra

The Lotka-Volterra simulator describes the population dynamics of a well known

predator-prey system. For most parameters, the simulation produces chaotic be-

havior. Realistic scenarios with oscillatory behavior appears only for a small set

of parameters. Consequently, inference on this simulator is extremely challenging.

We follow the setup described in section 4.9.3. There are 4 parameters and 9

normalized summary statistics. We place the same uniform prior on the log pa-

rameters and use the same ground truth parameters. After performing inference

on all four parameters, we similarly show in figure 5.5 (right) the marginal poste-

rior distribution for log θ1 in the same format as Papamakarios and Murray [2016]

and Tran et al. [2017a].

For KBR [Fukumizu et al., 2013], KELFI, and DME, we again sample their poste-

rior mean embeddings with kernel herding to get 10000 posterior samples. Finally,

to compute the 95% interval, we compute the empirical 2.5% quantile and 97.5%

quantiles on marginal samples of log θ1 from the 10000 posterior samples. For

MDN [Papamakarios and Murray, 2016] and the two LFVI methods [Tran et al.,

2017a], we report the results from the original source, as well as their results for

REJ-ABC, Markov chain Monte carlo ABC (MCMC-ABC), and SMC-ABC.

For Lotka-Volterra, the ABC methods used more than 100000 simulations, while

MDN used 10000 simulations. To achieve competitive accuracy, kernel approaches

such as DMEs, KELFI, and KBR used 2000, 2500, and 2500 simulations.

5.10 Summary and Future Work

The connections of DMEs with CMEs and GPs produce useful insights towards the

KME framework, and are important steps towards establishing Bayesian views of

KMEs. DMEs are novel solutions to a class of nonparametric Bayesian regression

problems and enable applications such as sparse representation learning and LFI.

There are multiple possible dimensions for future work. From section 5.6, relaxing

assumptions required for DMOs as a nonparametric Bayes’ rule can have fruitful

theoretical and practical implications. From section 5.5, the formulation of the

TTR problem is general and open doors to more development. In this work we

posited linear models or RKHS solutions to the TTR problem to obtain variants of

the DME. Nevertheless, there is potential for using the TTR losses to train other

model architectures, such as neural networks. Furthermore, just as sparse repre-

sentation learning is a special case of the TTR problem, supervised dimensionality

reduction could possibly be achieved in the special case when X has much lower

dimensionality than Y , and is worthwhile to investigate.
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5.11 Supporting Proofs for Section 5.3

Proof of Theorem 5.1. Let f ∈ Hk and g(y) := E[f(X)|Y = y]. Assuming

g ∈ H`, then CY Y g = CY Xf [Fukumizu et al., 2004], so that

g = C−1
Y YCY Xf

= ((CY X)TC−1
Y Y )Tf

= (CXYC
−1
Y Y )Tf,

(5.13)

where the inverse C−1
Y Y exists because `(y, ·) is assumed to be in the image of CY Y

so that any g ∈ H` is also in the image. Hence, CXYC
−1
Y Y satisfies the definition

of a CMO.

Proof of Lemma 5.1. Each of the following statements are equivalent to each

other.

(CX|Y )Tf = E[f(X)|Y = ·], ∀f ∈ Hk

⇐⇒ 〈`(y, ·), (CX|Y )Tf〉H` = 〈`(y, ·),E[f(X)|Y = ·]〉H` , ∀f ∈ Hk, ∀y ∈ Y
⇐⇒ 〈CX|Y `(y, ·), f〉Hk = E[f(X)|Y = y], ∀f ∈ Hk, ∀y ∈ Y
⇐⇒ 〈CX|Y `(y, ·), f〉Hk = 〈E[k(X, ·)|Y = y], f〉Hk , ∀f ∈ Hk, ∀y ∈ Y

⇐⇒ CX|Y `(y, ·) = E[k(X, ·)|Y = y], ∀y ∈ Y .
(5.14)

Consequently, the first and last statements are equivalent.

Proof of Theorem 5.2. We show that the empirical CMO can be written as

(5.5). We use a special case of the Woodbury identity [Higham, 2002], B(CB +

λI)−1 = (BC + λI)−1B, where B and C are appropriately defined operators,

such matrices with the correct shapes. Using the empirical forms for the cross-

covariance operators, we have

ĈX|Y := ĈXY (ĈY Y + λI)−1

=
1

n
ΦΨT (

1

n
ΨΨT + λI)−1

= ΦΨT (ΨΨT + nλI)−1

= Φ(ΨTΨ + nλI)−1ΨT

= Φ(L+ nλI)−1ΨT .

(5.15)
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5.12 Supporting Proofs for Section 5.4

Proof of Theorem 5.3. Let f ∈ Hk and g(y) := E[f(X)|Y = y], then from

definition 5.2 we have

g = (CX|Y )Tf

CXY g = CXY (CX|Y )Tf

CX|YCY Y g = CX|YCY Y (CX|Y )Tf

(CX|YCY Y (CX|Y )T )−1CX|YCY Y g = f

((CX|YCY Y )T (CX|YCY Y (CX|Y )T )−1)Tg = f,

(5.16)

where the inverse (CX|YCY Y (CX|Y )T )−1 exists because CXY g ∈ Hk and k(x, ·) ∈
image(CX|YCY Y (CX|Y )T ) so that CXY g for any g ∈ H` is also in the image. In

the last line we also used the fact that (CX|YCY Y (CX|Y )T )T = CX|YCY Y (CX|Y )T

is symmetric since (CY Y )T = CY Y . Hence, (CX|YCY Y )T (CX|YCY Y (CX|Y )T )−1 sat-

isfies the definition of a DMO. The assumption `(y, ·) ∈ image(CY Y ) is required

so that the original CMO exists and is unique.

Proof of Theorem 5.4. Since `(y, ·) ∈ image(CY Y ) for all y ∈ Y and k(x, ·) ∈
image(CX|YCY Y (CX|Y )T ) for all x ∈ X , we have that C−1

Y Y exists so that CX|Y is

unique and (CX|YCY Y (CX|Y )T )−1 exists so that C ′X|Y is unique. Due to theorem 5.3

we have C ′X|Y = (CX|YCY Y )T (CX|YCY Y (CX|Y )T )−1. Since CX|YCY Y (CX|Y )T is at

least positive semi-definite and invertible we can write (CX|YCY Y (CX|Y )T )−1 =

limε→0+(CX|YCY Y (CX|Y )T + εI)−1,

C ′X|Y = lim
ε→0+

(CX|YCY Y )T (CX|YCY Y (CX|Y )T + εI)−1

= lim
ε→0+

(CX|YCY Y )T (CX|Y (CX|YCY Y )T + εI)−1

= lim
ε→0+

(CXY )T (CX|Y (CXY )T + εI)−1

= lim
ε→0+

CY X(CX|YCY X + εI)−1

= lim
ε→0+

(CY XCX|Y + εI)−1CY X

= lim
ε→0+

(CY YC
−1
Y YCY XCX|Y + εCY YC

−1
Y Y )−1CY X

= lim
ε→0+

(C−1
Y YCY XCX|Y + εC−1

Y Y )−1C−1
Y YCY X

= lim
ε→0+

(C−1
Y YCY XCX|Y + εC−1

Y Y )−1C−1
Y YCY X

= lim
ε→0+

((CXYC
−1
Y Y )TCX|Y + εC−1

Y Y )−1(CXYC
−1
Y Y )T

= lim
ε→0+

((CX|Y )TCX|Y + εC−1
Y Y )−1(CX|Y )T

= ((CX|Y )TCX|Y )−1(CX|Y )T =: C†X|Y .

(5.17)



Bayesian Deconditional Kernel Mean Embeddings 143

In line 6 we used the Woodbury identity [Higham, 2002]. In the last line, the limit

exists as ((CX|Y )TCX|Y )−1 exists.

Proof of Theorem 5.5. We show that the empirical DMO can be written as

(5.10). From definition 5.3 and theorem 5.2, the likelihood operator is estimated

from {xi, yi}ni=1 as

ĈX|Y := ĈXY (ĈXX + λI)−1 = Φ(L+ nλI)−1ΨT . (5.18)

The prior operator corresponding to the marginal PY is estimated from {ỹj}mj=1 as

C̃Y Y =
1

m
Ψ̃Ψ̃T . (5.19)

Let A := (L+ nλI)−1L̃, the joint operator is estimated as

ĈX|Y C̃Y Y =
1

m
Φ(L+ nλI)−1ΨT Ψ̃Ψ̃T =

1

m
Φ(L+ nλI)−1L̃Ψ̃T =

1

m
ΦAΨ̃T . (5.20)

The evidence operator is estimated as

ĈX|Y C̃Y Y (ĈX|Y )T =
1

m
Φ(L+ nλI)−1L̃Ψ̃TΨ(L+ nλI)−1ΦT

=
1

m
Φ(L+ nλI)−1L̃L̃T (L+ nλI)−1ΦT

=
1

m
ΦAATΦT .

(5.21)

Finally, by definition 5.6, the DMO is estimated as

C̄ ′X|Y = (ĈX|Y C̃Y Y )T (ĈX|Y C̃Y Y (ĈX|Y )T + εI)−1

=

[
1

m
ΦAΨ̃T

]T[
1

m
ΦAATΦT + εI

]−1

=
[
ΦAΨ̃T

]T [
ΦAATΦT +mεI

]−1

= Ψ̃ATΦT
[
ΦAATΦT +mεI

]−1

= Ψ̃
[
ATΦTΦA+mεI

]−1
ATΦT

= Ψ̃
[
ATKA+mεI

]−1
ATΦT .

(5.22)
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5.13 Supporting Proofs for Section 5.5

Proof of Theorem 5.6. Each optimization is a standard regularized least squares

problem. The first optimization over v can be written as

v̂[w] = arg min
v∈Rq

‖ΦTw −ΨTv‖2 + nλ‖v‖2, (5.23)

where f = ΦTw is the target and Ψ is the feature matrix. This gives the solution

v̂[w] = (ΨΨT + nλI)−1Ψ(ΦTw). Therefore, The second optimization over w can

be written as

w̄ = arg min
w∈Rp

‖z̃− Ψ̃T v̂[w]‖2 +mε‖w‖2

= arg min
w∈Rp

‖z̃− Ψ̃T (ΨΨT + nλI)−1ΨΦTw‖2 +mε‖w‖2

= arg min
w∈Rp

‖z̃− ATΦTw‖2 +mε‖w‖2

= arg min
w∈Rp

‖z̃−ΘTw‖2 +mε‖w‖2,

(5.24)

where we used A := ΨT (ΨΨT + nλI)−1Ψ̃ as per definition 5.8 and we define

Θ := ΦA. This is now a regularized least squares problem with z̃ as the target and

Θ := ΦA as the feature matrix. This gives the solution w̄ = (ΘΘT +mεI)−1Θz̃ =

(ΦAATΦT + mεI)−1ΦAz̃, which yields the parametric DME estimator in defini-

tion 5.8.

Proof of Lemma 5.2. We first establish that the transformation matrix in def-

inition 5.7 A = (L + nλI)−1L̃ is the same as the transformation matrix in defi-

nition 5.8 A = ΨT (ΨΨT + nλI)−1Ψ̃ via a special case of the Woodbury identity

B(CB + δI)−1 = (BC + δI)−1B for appropriately sized matrices or operators B

and C [Higham, 2002]. Consequently, (L + nλI)−1L̃ = (ΨTΨ + nλI)−1ΨT Ψ̃ =

ΨT (ΨΨT + nλI)−1Ψ̃.

From definition 5.7 we have ᾱ := A
[
ATKA+mεI

]−1
z̃ so that

Φᾱ = ΦA
[
ATKA+mεI

]−1
z̃

= ΦA
[
ATΦTΦA+mεI

]−1
z̃

=
[
ΦAATΦT +mεI

]−1
ΦAz̃

= w̄.

(5.25)

This relationship is a direct consequence of the kernel trick, where we used k(x, x′) =

φ(x)Tφ(x′) such that K = ΦTΦ.



Bayesian Deconditional Kernel Mean Embeddings 145

Proof of Theorem 5.7 Part 1. In this proof we provide the derivations for

task transformed Bayesian linear regression (TTBLR). We first reiterate the priors

and likelihoods used.

Priors We first place priors on the weights of our linear models g(y) = vTψ(y)

and f(x) = wTψ(x),

p(v) ∼ N (v; 0, β2I),

p(w) ∼ N (w; 0, γ2I).
(5.26)

Likelihoods As we only observe from g and never from f directly, there is no

need to add noise from f(x) to z and we degenerate the likelihood to z = f(x).

The likelihood for g is the regular Gaussian likelihood due to observational noise.

Together, we have
p(z|v) = N (z; vTψ(y), σ2),

p(z|w) = N (z; wTφ(x), 0).
(5.27)

Prior for g The prior on the weights of g is

p(v) = N (v; 0, β2I). (5.28)

Likelihood for g In task transformed learning, the pairs (y, z) are used to learn

g, and (ỹ, z̃) are the query points for g. Although z is not directly available, they

are propagated through from f . We also refer to z as the pseudo-training targets.

This leads to the following likelihood,

p(z|v) = N (z; ΨTv, σ2I),

p(z̃|v) = N (z̃; Ψ̃Tv, σ2I).
(5.29)

Marginal Likelihood for g The marginal likelihood of observing the pseudo-

training targets z is

p(z) =

∫
Rq
p(z|v)p(v)dv

= N (z; 0, β2ΨTΨ + σ2I).

(5.30)

Posterior for g The posterior of the weights given the pseudo-training targets

z is

p(v|z) =
p(z|v)p(v)

p(z)

= N

(
v;

(
ΨΨT +

σ2

β2
I

)−1

Ψz, σ2

(
ΨΨT +

σ2

β2
I

)−1
)
.

(5.31)
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Predictive distribution for g The posterior predictive distribution of z̃ given

the pseudo-training targets z is

p(z̃|z) =

∫
Rq
p(z̃|v)p(v|z)dv

= N

(
z̃; Ψ̃T

(
ΨΨT +

σ2

β2
I

)−1

Ψz, σ2Ψ̃T

(
ΨΨT +

σ2

β2
I

)−1

Ψ̃ + σ2I

)
= N (z̃;ATz,Σ),

(5.32)

where A = ΨT (ΨΨT + σ2

β2 I)−1Ψ̃ and Σ = σ2Ψ̃T (ΨΨT + σ2

β2 I)−1Ψ̃ + σ2I.

Importantly, the MAP solution for learning g amount to just taking the posterior

mean v̂ = (ΨΨT + σ2

β2 I)−1Ψz as a point estimate. In this case, the predictive

covariance would simplify to Σ = σ2I.

Prior for f The prior on the weights of f is

p(w) = N (w; 0, γ2I). (5.33)

Likelihood for f As targets z are never directly observed from f , the likelihood

is a noiseless Gaussian likelihood,

p(z|w) = N (z; ΦTw, 0I),

p(z?|w) = N (z?; (Φ?)Tw, 0I).
(5.34)

Propagating this likelihood through the predictive distribution of g, we have

p(z̃|w) =

∫
Rn
p(z̃|z)p(z|w)dz

= N (z̃;ATΦTw,Σ).

(5.35)

The above prior-likelihood pair describes a TBLR with M = A = ΨT (ΨΨT +
σ2

β2 I)−1Ψ̃ as the transformation matrix and Σ = σ2Ψ̃T (ΨΨT + σ2

β2 I)−1Ψ̃ + σ2I as

the noise covariance. As such, the remaining distributions exhibit the same forms

as shown in table 5.3.

Marginal Likelihood for f The marginal likelihood for the observed targets z̃

is

p(z̃) =

∫
Rp
p(z̃|w)p(w)dw

= N (z̃; 0, γ2ATΦTΦA+ Σ)

= N (z̃; 0, [Σ−1 − Σ−1ATΦTCΦAΣ−1]−1),

(5.36)
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Table 5.3: Summary of TBLR and TBKR, where we define the shorthand
S := MTKM + Σ, C := [ΦMΣ−1MTΦT + 1

γ2
I]−1, and m := CΦMΣ−1z̃.

Density Transformed Bayesian Linear Regression Transformed Bayesian Kernel Regression

Prior p(w) = N (w; 0, γ2) p(f) = N (f ; 0, K)
Likelihood p(z̃|w) = N (z̃;MTΦTw,Σ) p(z̃|f) = N (z̃;MT f ,Σ)
Evidence p(z̃) = N (z̃; 0, [Σ−1 − Σ−1MTΦTCΦMΣ−1]−1) p(z̃) = N (z̃; 0,MTKM + Σ)
Posterior p(w|z̃) = N (w; m, C) p(f |z̃) = N (f ;KMS−1z̃, K −KMS−1MTK)
Predictive p(z?|z̃) = N (z?; Φ?Tm,Φ?TCΦ?) p(z?|z̃) = N (z?;K?TMS−1z̃, K?? −K?TMS−1MTK?)

where C = [ΦAΣ−1ATΦT + 1
γ2
I]−1. The last line is an alternative form that is

more computationally efficient when the number of features is less than p < m

where p is the dimensionality of the feature φ(x) for f .

Posterior for f The posterior of the weights w given the observed targets z̃ is

p(w|z̃) =
p(z̃|w)p(w)

p(z̃)

= N (w; m, C),

(5.37)

where m := CΦAΣ−1z̃.

Predictive distribution for f Finally, the overall predictive distribution of

query targets z? given the observed targets z̃ is

p(z?|z̃) =

∫
Rp
p(z?|w)p(w|z̃)dw

= N (z?; Φ?Tm,Φ?TCΦ?).

(5.38)

Consider the posterior mean m := CΦAΣ−1z̃ = [ΦAΣ−1ATΦT + 1
γ2
I]−1ΦMΣ−1z̃,

which would also be the MAP solution for f . Using the MAP solution for learning

g such that Σ = σ2I, we have m := [ΦAATΦT + σ2

γ2
I]−1ΦAz̃. This is the same form

as the weights w̃ of the parametric DME estimator (definition 5.8) with λ = σ2

nβ2

and ε = σ2

mγ2
.
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Proof of Theorem 5.7 Part 2. In this proof we provide the derivations for

task transformed Bayesian kernel regression (TTBKR), also named task trans-

formed Gaussian process regression (TTGPR), whose graphical model is provided

in figure 5.2. We first reiterate the priors and likelihoods used.

Priors We place GP priors on the functions g and f directly,

g ∼ GP(0, `),

f ∼ GP(0, k).
(5.39)

Likelihoods As we only observe from g and never from f directly, there is no

need to add noise from f(x) to z and we degenerate the likelihood to z = f(x).

The likelihood for g is the regular Gaussian likelihood due to observational noise.

Together, we have
p(z|g) = N (z; g(y), σ2),

p(z|f) = N (z; f(x), 0).
(5.40)

Prior for g The prior of g at y is

p(g) = N (g; 0, L). (5.41)

Likelihood for g In task transformed learning, the pairs (y, z) are used to learn

g, and (ỹ, z̃) are the query points for g. Although z is not directly available, they

are propagated through from f . We also refer to z as the pseudo-training targets.

The likelihood of observing z at y is,

p(z|g) = N (z; g, σ2I). (5.42)

Marginal Likelihood for g The marginal likelihood of observing the psuedo-

training targets z is:

p(z) =

∫
Rn
p(z|g)p(g)dg

= N (z; 0, L+ σ2I).

(5.43)

Posterior for g The posterior of the latent function evaluations g at y given

the pseudo-training targets z is

p(g|z) =
p(z|g)p(g)

p(z)

= N (g;L(L+ σ2I)−1z, L− L(L+ σ2I)−1L).

(5.44)
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Predictive distribution for g To obtain the predictive distribution, we first

condition the GP field for on the latent function evaluations g at y and to obtain

the conditional distribution for g̃ at ỹ given g at y,

p(g̃|g) = N (g̃; L̃TL−1g, ˜̃L− L̃TL−1L̃). (5.45)

where ˜̃L := Ψ̃T Ψ̃. Now, marginalize the conditional field against the posterior,

p(g̃|z) =

∫
Rn
p(g̃|g)p(g|z)dg

= N (g̃; L̃T (L+ σ2I)−1z, ˜̃L− L̃T (L+ σ2I)−1L̃)

(5.46)

Finally, marginalize the likelihood p(g̃|z) with the predictive distribution of the

latent evaluations g̃ to get the final predictive distribution of the observations z̃,

p(z̃|z) =

∫
Rm
p(z̃|g̃)p(g̃|z)dg̃

= N (z̃; L̃T (L+ σ2I)−1z, ˜̃L+ σ2I − L̃T (L+ σ2I)−1L̃)

= N (z̃;ATz,Σ),

(5.47)

where A = (L+ σ2I)−1L̃ and Σ = ˜̃L+ σ2I − L̃T (L+ σ2I)−1L̃.

Importantly, the MAP solution for learning g amount to just taking the poste-

rior mean g̃ = L̃T (L + σ2I)−1z as a point estimate. In this case, the predictive

covariance would simplify to Σ = σ2I.

Prior for f The prior of f at x is

p(f) = N (f ; 0, K). (5.48)

Likelihood for f As targets z are never directly observed from f , the likelihood

is a noiseless Gaussian likelihood,

p(z|f) = N (z; f , 0I). (5.49)

Propagating this likelihood through the predictive distribution of g, we have

p(z̃|f) =

∫
Rn
p(z̃|z)p(z|f)dz

= N (z̃;AT f ,Σ).

(5.50)

The above prior-likelihood pair describes a TBKR with M = A = (L + σ2I)−1L̃

as the transformation matrix and Σ = ˜̃L + σ2I − L̃T (L + σ2I)−1L̃ as the noise
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covariance. As such, the remaining distribution exhibit the same forms as shown

in table 5.3.

Marginal Likelihood for f The marginal likelihood for the observed targets z̃

is

p(z̃) =

∫
Rn
p(z̃|f)p(f)df

= N (z̃; 0, ATKA+ Σ).

(5.51)

Posterior for f The posterior of the function evaluations f at x given the

observed targets z̃ is

p(f |z̃) =
p(z̃|f)p(f)

p(z̃)

= N (f ;KA(ATKA+ Σ)−1z̃, K −KA(ATKA+ Σ)−1ATK).

(5.52)

Predictive distribution for f Finally, to obtain the predictive distribution

we first condition the GP field on the latent function evaluations f to obtain the

conditional distribution for f? at x? given f at x.

p(f?|f) = N (f?; (K?)TK−1f , K?? − (K?)TK−1K?). (5.53)

Now, marginalize the conditional field against the posterior,

p(f?|z̃) =

∫
Rn
p(f?|f)p(f |z̃)df

= N (f?; (K?)TA(ATKA+ Σ)−1z̃, K?? − (K?)TA(ATKA+ Σ)−1ATK?).
(5.54)

Finally, the overall predictive distribution of query targets z? given the observed

targets z̃ is

p(z?|z̃) =

∫
Rn
p(z?|f?)p(f?|z̃)df?

= N (z?; (K?)TA(ATKA+ Σ)−1z̃, K?? − (K?)TA(ATKA+ Σ)−1ATK?).
(5.55)

Consider the posterior predictive mean at a particular query point x, f̄(x) =

(k(x))TA(ATKA + Σ)−1z̃ = z̃T (ATKA + Σ)−1ATk(x). Using the MAP solution

for learning g such that Σ = σ2I, we have f̄(x) = z̃T (ATKA + σ2I)−1ATk(x).

This is the same form as the nonparametric DME estimator (definition 5.8) with

λ = σ2

n
and ε = σ2

m
.
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5.14 Supporting Proofs for Section 5.6

Proof of Theorem 5.8. We first factorize the joint operator CY X = (CXY )T in

both directions,

CY |XCXX = CY X = (CXY )T = (CX|YCY Y )T = CY Y (CX|Y )T . (5.56)

This is analogous to the equation p(y|x)p(x) = p(y, x) = p(x, y) = p(x|y)p(y) =

p(y)p(x|y).

Since CX|YCY |XCXX = CXX , we then apply CX|Y on both sides to cancel out CY |X
and obtain the equation for CXX ,

CXX = (CX|YCY |X)CXX = CX|Y (CY |XCXX) = CX|YCY Y (CX|Y )T . (5.57)

This is analogous to the equation p(x) =
∫
Y p(y|x)dyp(x) =

∫
Y p(y|x)p(x)dy =∫

Y p(y)p(x|y)dy.

Hence,

C ′XX := CX|YCY Y (CX|Y )T = CXX . (5.58)

Finally, from theorem 5.3 we have

C ′X|Y = (CX|YCY Y )T (CX|YCY Y (CX|Y )T )−1 = CY XC
−1
XX = CY |X . (5.59)

Proof of Theorem 5.9. Since m = n and ỹ = y, we have that L̃ = L, Ψ̃ = Ψ.

Consequently, limλ→0+ A = limλ→0+(L+nλI)−1L = I. Substituting this into (5.5)

we have
lim
λ→0+

C̄ ′X|Y = lim
λ→0+

Ψ̃
[
ATKA+mεI

]−1
ATΦT

= Ψ
[
ITKI + nεI

]−1
ITΦT

= Ψ
[
K + nεI

]−1
ΦT .

(5.60)

Reversing the roles of X and Y in (5.5) and replacing the notation λ with ε, we

have that ĈY |X = Ψ
[
K + nεI

]−1
ΦT . This concludes the proof.
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5.15 Supporting Proofs for Section 5.9

Proof of Theorem 5.10. Consider the absolute difference between q̄(y) and

pε(y),

|q̄(y)− pε(y)| ≤ |q̄(y)− q(y)|+ |q(y)− pε(y)|. (5.61)

where q(y) := 〈κε(y, ·), ĈX|ΘµΘ〉Hk = E[〈κε(y, ·), ĈX|Θ`(Θ, ·)〉Hk ]. The first term

is

|q̄(y)− q(y)| = |〈κε(y, ·), ĈX|Θ(µ̃Θ − µΘ)〉Hk | = |〈(ĈX|Θ)Tκε(y, ·), (µ̃Θ − µΘ)〉H` |
≤ ‖(ĈX|Θ)Tκε(y, ·)‖H`‖(µ̃Θ − µΘ)‖H`
≤ c‖(µ̃Θ − µΘ)‖H` .

(5.62)

for some constant c since ĈX|Θ is a bounded operator for all n. Hence, |q̄(y)−q(y)|
decays at O(m−

1
2 ).

For the second term, we have pε(y) = E[pε(y|Θ)] = E[〈κε(y, ·), µX|Θ=Θ〉Hk ] =

E[〈κε(y, ·), CX|Θ`(Θ, ·)〉Hk ], similar to q(y) = E[〈κε(y, ·), ĈX|Θ`(Θ, ·)〉Hk ]. Since

we use bounded kernels, define ¯̀ := supθ ‖`(θ, ·)‖H` and κ̄ε := supy ‖κε(y, ·)‖Hk .
The second term becomes

|q(y)− pε(y)| = |E[〈κε(y, ·), ĈX|Θ`(Θ, ·)〉Hk ]− E[〈κε(y, ·), CX|Θ`(Θ, ·)〉Hk ]|
≤ E[|〈κε(y, ·), ĈX|Θ`(Θ, ·)〉Hk ]− E[〈κε(y, ·), CX|Θ`(Θ, ·)〉Hk |]
= E[|〈κε(y, ·), (ĈX|Θ − CX|Θ)`(Θ, ·)〉Hk |]
≤ E[‖κε(y, ·)‖Hk‖(ĈX|Θ − CX|Θ)`(Θ, ·)‖Hk ]
= ‖κε(y, ·)‖HkE[‖(ĈX|Θ − CX|Θ)`(Θ, ·)‖Hk ]
= κ̄εE[‖(ĈX|Θ − CX|Θ)`(Θ, ·)‖Hk ]
≤ κ̄εE[‖ĈX|Θ − CX|Θ‖HS‖`(Θ, ·)‖H` ]

= κ̄εE[‖ĈX|Θ − CX|Θ‖HS
√
`(Θ,Θ)]

= κ̄εE[
√
`(Θ,Θ)]‖ĈX|Θ − CX|Θ‖HS

≤ κ̄εE[¯̀]‖ĈX|Θ − CX|Θ‖HS
= κ̄ε ¯̀‖ĈX|Θ − CX|Θ‖HS.

(5.63)

Hence, in the worst case |q(y)−pε(y)| decays at the rate ‖ĈX|Θ−CX|Θ‖HS decays,

which is Op((nλ)−
1
2 + λ

1
2 ). Together with the first term, we have the claimed

convergence rate.

Finally, the empirical form is obtained from substituting the empirical forms

for the likelihood CMO and prior embedding, q̄(y) := 〈κε(y, ·), ĈX|Θµ̃Θ〉Hk =

〈κε(y, ·), (Φ(L+ nλI)−1ΨT )( 1
m

Ψ̃1m)〉Hk = 1
m
κTε A1m.



Chapter 6

Conclusion

Learning and inference form the foundation of an intelligent system. Yet, doing so

can be tremendously challenging in the real world, due to the richness and diversity

of our environment. In order to successfully discover and act upon important

relationships in complex systems, we must be careful not to place unnecessary

restrictions on the way we represent our knowledge, despite the simplification it

may bring. In this thesis, we represent conditional relationships with conditional

kernel mean embeddings, and derive frameworks to learn and make inferences with

them to leverage their high representational capacity.

The central theme of this thesis revolves around formulating coherent hyperparam-

eter learning and probabilistic inference frameworks around CMEs using Bayesian

principles. It presents novel frameworks for doing so in three general problem set-

tings – classification (chapter 3), inference (chapter 4), and regression (chapter 5),

painting three different perspectives of this theme. They are motivated by the

core philosophy that Bayesian principles would guide the development of a nat-

ural hyperparameter learning algorithm for the particular probabilistic inference

task, enabling a holistic modeling framework around the CME.

6.1 Themes and Connections

While the frameworks proposed in chapters 3 to 5 are developed in different set-

tings with different formulations and methodologies, there are overarching themes

and connections between them. In this discussion, we explore these connections

by focusing on different aspects of the framework.

The core advantage of developing frameworks that leverage CMEs is that it al-

lows for extremely flexible nonparametric representations of conditional distribu-

tions without assuming any particular parametric form. Consequently, in all three
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chapters, CMEs enable solutions to their respective problem settings in their most

general and least restrictive form:

• In chapter 3, the resulting classification framework is naturally probabilistic

and multiclass, subsuming the non-probabilistic and binary setting. It also

makes little assumption on the feature maps, enabling a wide range of pos-

sible architectures, from shallow to deep constructions with narrow to wide

layers.

• In chapter 4, the resulting inference framework does not require tractabil-

ity in likelihood evaluations, allowing approximate Bayesian inference to be

performed within challenging and intractable settings. This is possible as

our framework form nonparametric representations using only samples.

• In chapter 5, the resulting regression framework is established from mul-

tiple dimensions – from parametric to nonparametric for representation of

features, from non-Bayesian to Bayesian for inference on latents, and from

non-transformed to transformed for observations of targets. The learning

algorithm is general and unifies all these settings.

The three chapters of this thesis leverage Bayesian principles at different levels.

We can describe their differences firstly in terms of the how their hyperparameter

learning algorithms are developed and secondly in terms of how the probabilistic

inference tasks are performed.

Firstly, while all three chapters are motivated by formulating a marginal likelihood

objective for the inference task at hand, the level at which the marginal likelihood

objective aligns with both the inference task and the CME itself increases by each

chapter:

• In chapter 3, the hyperparameter learning objective does not correspond

to any known marginal likelihood, but emulates its desirable properties via

learning theoretic bounds, such as the critical balance between the data fit

error and a data-dependent model complexity. Consequently, in the strict

sense this formulation is not Bayesian, but attempts to emulate Bayesian

consequences using statistical learning theory.

• In chapter 4, the hyperparameter learning objective is a surrogate that

approximates the marginal likelihood of the likelihood-free inference task.

This arises from the realization that conditional kernel mean embeddings

are natural surrogates for likelihood-free models, which can be used for ap-

proximate Bayesian inference problems with intractable likelihoods. Conse-

quently, there already exists a natural Bayesian system from the problem
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setup, which, while intractable, can be approximated by surrogates using

conditional kernel mean embeddings.

• In chapter 5, the hyperparameter learning objective is exactly the marginal

likelihood of the task transformed regression task itself. This is possible as we

introduce, formulate, and establish deconditional kernel mean embeddings as

the natural counterpart to conditional kernel mean embeddings, show that

it solves the task transformed regression problem, and reveal their Bayesian

extensions and connections. Consequently, the marginal likelihood objective

is both aligned to the inference task and the conditional and deconditional

kernel mean embedding themselves.

Secondly, the three chapters also differ in the level of Bayesian treatment the

inference task receives, in part because the hyperparameter learning algorithms

are formulated with respect to the inference task and, as described above, they

differ in the level at which they leverage Bayesian principles:

• In chapter 3, the multiclass predictions are probabilistic, but not Bayesian,

since no uncertainty quantification is performed on latent variables or func-

tions.

• In chapter 4, the likelihood-free inference task is an approximate Bayesian

inference task itself, so uncertainty quantification is performed for simulator

parameters as a core and defining component of the inference task, since

it is the main purpose of this problem setting. However, no uncertainty

quantification is performed on latent variables or functions of the surrogates

themselves, including the conditional kernel mean embedding itself.

• In chapter 5, uncertainty quantification is performed on the solution the

conditional and deconditional kernel mean embedding provides, which gives

rise to uncertainty quantification for the task transformed regression task.

This is enabled by regression perspectives to the estimators that conditional

and deconditional kernel mean embeddings provide.

6.2 Implications and Future Work

This thesis makes advances to our understanding of CMEs and their applicability

through the lens of three cornerstone settings of machine learning – classification,

inference, and regression. In addition to the list of contributions that was intro-

duced in section 1.3, the thesis also makes softer contributions by demonstrating

novel approaches or ideas that could be generalized beyond the frameworks for-

mulated.
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Chapter 3 investigates learning theoretic bounds from statistical learning theory

to establish expected risk bounds for CMEs. Traditionally, expected risk bounds

are specified with respect to a class of functions, instead of specified with respect

to a particular function. In our case, the class of functions are CMEs across a set

of hyperparameter settings, and the particular function is a single CME with one

set of hyperparameter setting. In our proofs, we showed how to construct expected

risk bounds for the latter from the former. The critical element being that the

particular function defines a space of functions via an upper bound. Furthermore,

due to its probabilistic and data-dependent nature, the expected risk bound can

be instantiated with only batch subsets of the data at each iteration instead,

dramatically lowering computational costs. Those ideas by themselves do not rely

on CMEs and can be potentially generalized beyond CMEs.

In our work, we relied on the cross entropy loss and the convergence properties we

proved for the MCE. However, it is conceivable that for other classifiers, potentially

not constructed from CMEs and have different convergence properties, could be

applied in conjunction with a potentially different loss.

Chapter 4 proposes a complete framework for likelihood-free inference (LFI) encap-

sulating model, learning, and inference. While KELFI is an efficient and effective

framework given simulator samples, it has yet to play an active role in choosing

parameter settings to run the simulator and collect samples from. In our discussion

we alluded to the potential of Bayesian optimization techniques via the connection

of the KML to GPR. Alternatively, a sequential strategy may be adopted where

the posterior samples from KELFI serve to be the proposal prior for the next batch

of simulator runs.

Another potential addition to the KELFI framework is to explicitly formulate the

KML to learn or alleviate summary statistics. While we have done this for specific

data formats such as with the iid-KML or the ST-KML, it may be possible to

construct the CME used in the KML from highly flexible function classes such as

neural networks and treat the summary operations as a learnable mapping.

Chapter 5 introduces the task transformed regression (TTR) problem. In our

work, we propose linear and kernel solutions to the task transformed regression

(TTR) problem to obtain variants of the DME estimators, as well as Bayesian

extensions thereof with connections to the TTGP. Nevertheless, it is possible to

posit other families of models or architectures to be trained under the TTR losses

to arrive at solutions other than the standard DME that we propose.

Furthermore, it is possible to generalize the task transformed problem to classi-

fication or other prediction tasks by using a the appropriate loss. We call this

general setting task transformed learning, which in essence transforms the task of

predicting a target from old features to predicting a target from new features when

only pairs between targets and old features and pairs between old features and new



Conclusion 157

features are available. The crucial element is not to treat them as a cascaded or

transitive stages of prediction, which as we have shown is ineffective in the TTR

case. Instead, the philosophy is to treat it as two processes from each set of fea-

tures, old or new, to the target, and match them correspondingly for inference to

propagate, with an attention to which variables are latent and which are not. In

the formulation of the TTGP, due to the GP prior and Gaussian likelihoods, this

propagation has closed form solutions. It is thus conceivable that generalizations

to the TTR problem could in general not admit closed form solutions for such

propagations, and approximations would be necessary.

Potential applications of the task transformed learning frameworks include super-

vised dimensionality reduction and learning under missing data. In the former,

the new features have lower dimensionality than the old features. In the latter,

we have three cases depending on the goal – either the old or new features con-

tain missing values and the other is the completed version of it, or both are vary

in what they are missing from the completed version. Evidently, a more formal

problem definition is required to establish the appropriate formulation.

The task transformed learning problem may also bear connections to explore with

transfer learning and meta learning, as they all address learning between or across

tasks.

In summary, Bayesian principles and perspectives to CMEs enable more automatic

and powerful technique for learning and inference. This thesis contributed towards

this goal in three very cornerstone settings in machine learning, and open up

avenues in multiple directions for further investigations.
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